位置: 编程技术 - 正文

PHP实现的迪科斯彻(Dijkstra)最短路径算法实例(phpdie)

编辑:rootadmin

推荐整理分享PHP实现的迪科斯彻(Dijkstra)最短路径算法实例(phpdie),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:phpdesk,php dio,php des,php dicom,php _dir_,php di,php di,php dio,内容如对您有帮助,希望把文章链接给更多的朋友!

本文实例讲述了PHP实现的迪科斯彻(Dijkstra)最短路径算法。分享给大家供大家参考,具体如下:

一、待解决问题

单源最短路径问题,在给定有向图中求一个顶点(单源顶点)到其他所有顶点的最短路径问题。在下图中,每条边上有一个权值,希望求解A到所有其他顶点(B/C/D/E/F/G)的最短路径。

二、问题分析(最短路径的子结构同样最优性)

如果P(A,G)是从顶点A到G的最短路径,假设D和F是这条路径上的中间点,那么P(D,F)一定时从D到F的最短路径。如果P(D,F)不是D到F的最短路径,那必然存在某一个节点M的另一条D到F的路径可以使P(A,B...M...F,G)比P(A,G)小,自相矛盾。

有了这样的性质,我们可以了解Dijkstra算法。

三、Dijkstra算法

Dijkstra 算法,又叫迪科斯彻算法(Dijkstra),又称为单源最短路径算法,所谓单源是在一个有向图中,从一个顶点出发,求该顶点至所有可到达顶点的最短路径问题。 问题描述为设G=(V,E)是一个有向图,V表示顶点,E表示边。它的每一条边(i,j)属于E,都有一个非负权W(I,j),在G中指定一个结点v0,要求把从v0到G的每一个接vj(vj属于V)的最短有向路径找出来(或者指出不存在)。 Dijstra算法是运用贪心的策略,从源点开始,不断地通过相联通的点找出到其他点的最短距离。

Dijkstra的贪心应用在他利用(二)中的性质,不断地选取“最近”的节点并试探每个节点的所有可能存在链接,以起始点为中心向外层层扩展,直到扩展到终点为止。对于源点A,逐步扩展,根据dist[j]=min{dist[j],dist[i]+matrix[i][j]}更新与i直接相邻的顶点信息。

算法描述

PHP实现的迪科斯彻(Dijkstra)最短路径算法实例(phpdie)

1)算法思想:

设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中与k相邻的各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值为顶点k的距离加上k与u边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

四、算法PHP实现

调用类:

执行结果:

更多关于PHP相关内容感兴趣的读者可查看本站专题:《PHP数据结构与算法教程》、《PHP基本语法入门教程》、《php面向对象程序设计入门教程》、《php字符串(string)用法总结》及《php查找技巧与方法总结》

希望本文所述对大家PHP程序设计有所帮助。

PHP实现广度优先搜索算法(BFS,Broad First Search)详解 本文实例讲述了PHP实现广度优先搜索算法。分享给大家供大家参考,具体如下:广度优先搜索的算法思想Breadth-FirstTraversal广度优先遍历是连通图的一种

PHP实现深度优先搜索算法(DFS,Depth First Search)详解 本文实例讲述了PHP实现深度优先搜索算法。分享给大家供大家参考,具体如下:深度优先搜索的实现原理:实现代码:phpclassSearch_Method{//无向图的数组

PHP中使用jQuery+Ajax实现分页查询多功能操作(示例讲解) 1.首先做主页面Ajax_pag.php代码如下:!DOCTYPEhtmlhtmlheadmetacharset="UTF-8"titleAjax做分页/titlescriptsrc="bootstrap/js/jquery-1..2.min.js"/scriptscriptsrc="Ajax_pag.js"/scriptscriptsr

标签: phpdie

本文链接地址:https://www.jiuchutong.com/biancheng/282901.html 转载请保留说明!

上一篇:PHP环形链表实现方法示例(环形链表入口节点)

下一篇:PHP实现广度优先搜索算法(BFS,Broad First Search)详解(广度优先算法代码)

  • 担任多家公司办事处主任
  • 退回以前年度教育附加费
  • 进项税发票认证期限多长时间
  • 去年的进项发票今年还能抵扣吗
  • 一般纳税人转登记为小规模纳税人
  • 仓储费和仓储服务费的区别
  • 进口货物会计分录举例
  • 企业接到银行通知,借入长期借款的应付利息为15000
  • 在杂志上发表论文
  • 缴纳增值税的计税依据
  • 公司购买的矿泉水属于什么科目
  • 差额开票的会计分录
  • 建筑单位的工作岗位有哪些
  • 当月认证失控发票怎么做账处理?
  • 宣传用品发票包括哪些
  • 预提长期借款利息的会计分录怎么写
  • 冲账与挂账之间有什么区别?
  • 装修工程款如何记账
  • 公司租赁汽车
  • 公益性捐赠税前扣除资格认定程序
  • 系统日志在哪里打开
  • 商业意外险进项可以抵扣吗
  • 资本公积转增资本要交税吗
  • 库存现金盘亏盘盈的原因
  • vue 网页
  • php 构造方法
  • 麒麟软件的linux桌面操作系统
  • 查看redis节点
  • web前端开发 vue
  • php array_fill
  • mysql事件使用方法
  • 爱上源码,重学Spring IoC深入
  • Joe是一款优雅功能强大的Typecho主题功能多上手快
  • 外籍专家劳务费
  • 新购买的发票如何读取
  • 销售包装什么意思
  • Windows OpenGL ES 图像曝光度调节
  • macos装mysql
  • mongodb 入门
  • mysql存储过程 游标
  • dede插件
  • 简易征收适用哪些业务租赁
  • 一般纳税人哪种税
  • 在mysql中设置事务保存点
  • sqlserver2008触发器语法
  • 代扣代缴附加税减免政策文件
  • 一般纳税人公司开普票几个税点?
  • 银行汇票的账务处理例题
  • 产品出口认证
  • 企业未开票收入怎么入账
  • 捐赠人赞助属于什么会计科目
  • 购置办公大楼,会计处理
  • 损益类所得税费用
  • 社保个人部分应该做到哪个科目
  • 代收开票收入怎么做账
  • 预售房提前还款需要去解押吗
  • 专家咨询费支付标准
  • 流动比率和速动比率过高说明什么
  • sql server常规错误
  • mysql 元数据管理
  • sql server 数据
  • mysql数据库的基本原理
  • 在windows中下列叙述正确的是什么
  • centos7 目录结构
  • hottray.exe是什么进程 有什么作用 hottray进程查询
  • win10推送win11
  • 重装win7旗舰版重启后黑屏
  • vb win7
  • 安装ghost win7
  • android录音软件
  • 查看流量的命令
  • php开机启动
  • Using Django with GAE Python 后台抓取多个网站的页面全文
  • javascript总结
  • 利用python进行
  • 打不死的小强励志词句
  • 安卓中px,dp,sp的区别
  • 税务稽查追溯时间是什么意思
  • 地方税务局办税流程
  • 天津税务陈岩
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设