位置: 编程技术 - 正文
推荐整理分享Python分析学校四六级过关情况,希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!
这段时间看了数据分析方面的内容,对Python中的numpy和pandas有了最基础的了解。我知道如果我不用这些技能做些什么的话,很快我就会忘记。想起之前群里发过一个学校的四六级成绩表,正好可以用来熟悉一下pandas中的一些用法。
1.数据介绍。
成绩表中包含的字段十分详细,里面有年级、性别、姓名、分数等等的一系列内容,我只想简单的分析一下我们学校的四六级过关率而已,所以去除了一些不必要的字段。留下的有如下几个字段:
第一列是自增的序号,没有什么实际意义。
第二列就是代表着该学生参加的是四级还是六级。
第三列是我们学校的院系名称。
第四列是学校院系的各个专业。
第五列是年级,代表着年入学。
第六列是性别。
后面的三列分别是总分、听力、阅读、写作等。
其中总分为0的都是缺考的。一共有接近条数据(没有报名的不在其中)。
2.预期结果。
我想利用这些数据最终通过图标的形式展示出以下几点:
1.各个学院的四六级平均分。
2.各个学院的四六级过关人数。
3.各个学院的各个年级过关人数。
4.各个年级的过关人数。
5.男生女生分别过关人数。
最终结果:
各个学院的四六级过关人数:
3.实现过程。
(1)导入依赖包。
程序分别使用了pandas进行分组转换,和matplotlib提供的绘图功能。
(2)加载数据。
想要分析数据自然要得到数据了,我将整理的数据存放在sj.xls中,是一个Excel类型的数据。 这一步使用pandas的read_excel即可,生成一个DataFrame对象。
加载完之后输出一下看看内容:
除了排版没有对齐之外其他都一样。
(3)统计各个学院平均分。
在这里就可以完成我们预期的第一个结果:
各个学院的四六级平均分:
想要各个学院的情况当然是要根据学院来进行分组了,同时也需要分出“CET4”和“CET6”两组。使用groupby即可,这样会生成一个SeriesGroupBy对象,然后再调用mean函数(默认是轴0计算,也就是我们想要的结果)即可统计出平均分情况。
这个时候将其输出的话会得到如下结果:
由于院系名称和语言级别是层次化索引的缘故,看起来并不是十分的友好,因此使用unstack将语言级别转从行转换为列。
再次输出的话结果就比较清晰了
使用pandas的绘图功能进行绘图:
运行一下看看结果:
可以看到这时候数据的结果都能够显示出来了,但是中文部分出现了问题,不过不要紧,科学上网一查就解决了:
python分析作业提交情况 这次做一个比较贴近我实际的东西:python分析作业提交情况。要求:将服务器中交作业的学生(根据文件的名字进行提取)和统计成绩的表格中的学生
python简单图片操作:打开显示保存图像方法介绍 一提到数字图像处理,可能大多数人就会想到matlab,但matlab也有自身的缺点:1、不开源,价格贵2、软件容量大。一般3G以上,高版本甚至达5G以上。3、
Scrapy抓取京东商品、豆瓣电影及代码分享 1.scrapy基本了解Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序
友情链接: 武汉网站建设