位置: 编程技术 - 正文
推荐整理分享Python实现的异步代理爬虫及代理池(python 异步操作),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:python异步ping,python 异步操作,python异步ping,python的异步编程,python3异步,python异步执行函数,python3异步,python3异步,内容如对您有帮助,希望把文章链接给更多的朋友!
使用python asyncio实现了一个异步代理池,根据规则爬取代理网站上的免费代理,在验证其有效后存入redis中,定期扩展代理的数量并检验池中代理的有效性,移除失效的代理。同时用aiohttp实现了一个server,其他的程序可以通过访问相应的url来从代理池中获取代理。
源码
Github
环境
Python 3.5+ Redis PhantomJS(可选) Supervisord(可选)因为代码中大量使用了asyncio的async和await语法,它们是在Python3.5中才提供的,所以最好使用Python3.5及以上的版本,我使用的是Python3.6。
依赖
redis aiohttp bs4 lxml requests seleniumselenium包主要是用来操作PhantomJS的。
下面来对代码进行说明。
1. 爬虫部分
核心代码
上面的核心代码实际上是一个用asyncio.Queue实现的生产-消费者模型,下面是该模型的一个简单实现:
运行上面的代码,一种可能的输出如下:
爬取页面
使用aiohttp实现的网页爬取函数,大部分代理网站都可以使用上面的方法来爬取,对于使用js动态生成页面的网站可以使用selenium控制PhantomJS来爬取——本项目对爬虫的效率要求不高,代理网站的更新频率是有限的,不需要频繁的爬取,完全可以使用PhantomJS。
解析代理
最简单的莫过于用xpath来解析代理了,使用Chrome浏览器的话,直接通过右键就能获得选中的页面元素的xpath:
安装Chrome的扩展“XPath Helper”就可以直接在页面上运行和调试xpath,十分方便:
BeautifulSoup不支持xpath,使用lxml来解析页面,代码如下:
爬虫规则
网站爬取、代理解析、滤等等操作的规则都是由各个代理网站的规则类定义的,使用元类和基类来管理规则类。基类定义如下:
各个参数的含义如下:
start_url(必需)
爬虫的起始页面。
ip_xpath(必需)
爬取IP的xpath规则。
port_xpath(必需)
爬取端口号的xpath规则。
page_count
爬取的页面数量。
urls_format
页面地址的格式字符串,通过urls_format.format(start_url, n)来生成第n页的地址,这是比较常见的页面地址格式。
next_page_xpath,next_page_host
由xpath规则来获取下一页的url(常见的是相对路径),结合host得到下一页的地址:next_page_host + url。
use_phantomjs, phantomjs_load_flag
use_phantomjs用于标识爬取该网站是否需要使用PhantomJS,若使用,需定义phantomjs_load_flag(网页上的某个元素,str类型)作为PhantomJS页面加载完毕的标志。
filters
过滤字段集合,可迭代类型。用于过滤代理。
爬取各个过滤字段的xpath规则,与过滤字段按顺序一一对应。
元类CrawlerRuleMeta用于管理规则类的定义,如:如果定义use_phantomjs=True,则必须定义phantomjs_load_flag,否则会抛出异常,不在此赘述。
目前已经实现的规则有西刺代理、快代理、代理、代理和 秘密代理。新增规则类也很简单,通过继承CrawlerRuleBase来定义新的规则类YourRuleClass,放在proxypool/rules目录下,并在该目录下的__init__.py中添加from . import YourRuleClass(这样通过CrawlerRuleBase.__subclasses__()就可以获取全部的规则类了),重启正在运行的proxy pool即可应用新的规则。
2. 检验部分
免费的代理虽然多,但是可用的却不多,所以爬取到代理后需要对其进行检验,有效的代理才能放入代理池中,而代理也是有时效性的,还要定期对池中的代理进行检验,及时移除失效的代理。
这部分就很简单了,使用aiohttp通过代理来访问某个网站,若超时,则说明代理无效。
3. server部分
使用aiohttp实现了一个web server,启动后,访问 访问 访问 '.0.0.1:', '.0.0.1:']"; 访问 content_type='text/html') ,这里body要求的是bytes类型,直接将从redis获取的缓存返回即可,conten_type='text/html'必不可少,否则无法通过浏览器加载主页,而是会将主页下载下来——在运行官方文档中的示例代码的时候也要注意这点,那些示例代码基本上都没有设置content_type。
这部分不复杂,注意上面提到的几点,而关于主页使用的静态资源文件的路径,可以参考之前的博客《aiohttp之添加静态资源路径》。
4. 运行
将整个代理池的功能分成了3个独立的部分:
proxypool
定期检查代理池容量,若低于下限则启动代理爬虫并对代理检验,通过检验的爬虫放入代理池,达到规定的数量则停止爬虫。
proxyvalidator
用于定期检验代理池中的代理,移除失效代理。
proxyserver
启动server。
这3个独立的任务通过3个进程来运行,在Linux下可以使用supervisod来=管理这些进程,下面是supervisord的配置文件示例:
因为项目自身已经配置了日志,所以这里就不需要再用supervisord捕获stdout和stderr了。通过supervisord -c supervisord.conf启动supervisord,proxyPool和proxyServer则会随之自动启动,proxyServer需要手动启动,访问
Python自动生产表情包 作为一个数据分析师,应该信奉一句话——一图胜千言。不过这里要说的并不是数据可视化,而是一款全民向的产品形态——表情包!!!!表情包不
python django事务transaction源码分析详解 pythonDjango事务网上关于django1.6的事务资料很多,但是1.8的却搜不到任何资料,自己要用的时候费了不少劲就是不行,现在记下要用的人少走弯路version:D
Python执行时间的计算方法小结 首先说一下我遇到的坑,生产上遇到的问题,我调度Python脚本执行并监控这个进程,python脚本运行时间远远大于python脚本中自己统计的程序执行时间。
标签: python 异步操作
本文链接地址:https://www.jiuchutong.com/biancheng/378694.html 转载请保留说明!友情链接: 武汉网站建设