位置: 编程技术 - 正文
推荐整理分享Python实现二分查找与bisect模块详解(python 二分查找函数),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:python二分查找代码,python二分查找算法,python二分查找例题,python二分算法,python二分算法,python二分查找代码,python二分查找算法,python二分算法,内容如对您有帮助,希望把文章链接给更多的朋友!
前言
其实Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n) 。对于大数据量,则可以用二分查找进行优化。
二分查找要求对象必须有序,其基本原理如下:
1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;
2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
3.如果在某一步骤数组为空,则代表找不到。
二分查找也成为折半查找,算法每一次比较都使搜索范围缩小一半, 其时间复杂度为 O(logn)。
我们分别用递归和循环来实现二分查找:
接着对这两种实现进行一下性能测试:
执行结果如下:
可以看出循环方式比递归效率高。
bisect 模块
Python 有一个 bisect 模块,用于维护有序列表。bisect 模块实现了一个算法用于插入元素到有序列表。在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高。Bisect 是二分法的意思,这里使用二分法来排序,它会将一个元素插入到一个有序列表的合适位置,这使得不需要每次调用 sort 的方式维护有序列表。
下面是一个简单的使用示例:
输出结果:
Bisect模块提供的函数有:
bisect.bisect_left(a,x, lo=0, hi=len(a)) :
查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的区间,默认是使用整个列表。如果 x 已经存在,在其左边插入。返回值为 index。
bisect.bisect_right(a,x, lo=0, hi=len(a))
bisect.bisect(a, x,lo=0, hi=len(a)) :
这2个函数和 bisect_left 类似,但如果 x 已经存在,在其右边插入。
bisect.insort_left(a,x, lo=0, hi=len(a)) :
在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。
bisect.insort_right(a,x, lo=0, hi=len(a))
bisect.insort(a, x,lo=0, hi=len(a)) :
和 insort_left 类似,但如果 x 已经存在,在其右边插入。
Bisect 模块提供的函数可以分两类: bisect* 只用于查找 index, 不进行实际的插入;而 insort* 则用于实际插入。
该模块比较典型的应用是计算分数等级:
执行结果:
同样,我们可以用 bisect 模块实现二分查找:
我们再来测试一下它与递归和循环实现的二分查找的性能:
可以看到其比循环实现略快,比递归实现差不多要快一半。
Python 著名的数据处理库 numpy 也有一个用于二分查找的函数 numpy.searchsorted, 用法与 bisect 基本相同,只不过如果要右边插入时,需要设置参数 side='right',例如:
那么,我们再来比较一下性能:
可以发现 numpy.searchsorted 效率是很低的,跟 bisect 根本不在一个数量级上。因此 searchsorted 不适合用于搜索普通的数组,但是它用来搜索 numpy.ndarray 是相当快的:
numpy.searchsorted 可以同时搜索多个值:
总结
标签: python 二分查找函数
本文链接地址:https://www.jiuchutong.com/biancheng/381383.html 转载请保留说明!上一篇:python基础教程之五种数据类型详解(python基础教程视频教程)
下一篇:python递归删除指定目录及其所有内容的方法(pythonlist删除指定位置元素)
友情链接: 武汉网站建设