位置: IT常识 - 正文

【已解决】探究CUDA out of memory背后原因,如何释放GPU显存?(想要探究的问题)

编辑:rootadmin
原力计划【已解决】探究CUDA out of memory背后原因,如何释放GPU显存? 目录1 问题背景2 问题探索2.1 CUDA固有显存2.2 显存激活与失活2.3 释放GPU显存3 问题总结4 告别Bug1 问题背景

推荐整理分享【已解决】探究CUDA out of memory背后原因,如何释放GPU显存?(想要探究的问题),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:想要探究的问题,写出你探究的结果,写出你探究的结果,探究结果怎么答,探究一下,写出你探究的结果,探究并解决问题的方法翻译,探究并解决问题的方法翻译,内容如对您有帮助,希望把文章链接给更多的朋友!

研究过深度学习的同学,一定对类似下面这个CUDA显存溢出错误不陌生

RuntimeError: CUDA out of memory. Tried to allocate 916.00 MiB (GPU 0; 6.00 GiB total capacity; 4.47 GiB already allocated; 186.44 MiB free; 4.47 GiB reserved in total by PyTorch)

本文探究CUDA的内存管理机制,并总结该问题的解决办法

2 问题探索2.1 CUDA固有显存

在实验开始前,先清空环境,终端输入nvidia-smi

接下来向GPU存入一个小的张量

import torchdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')torch.randn((2, 3), device=device)

占用显存情况如下,共计448M

而当我们增大张量的尺寸,例如

torch.randn((200, 300, 200, 20), device=device)

此时GPU占用也随之上升,共计1362M

这表明:GPU显存占用率和存入的数据尺寸成正相关,越大的数据占用显存越多,这其实是废话,但是把这句话反过来:越小的数据占用显存越小吗?做个实验

torch.randn((1, 1), device=device)

仍然占用448M

事实上,这是因为CUDA运行时,其固件会占用一定的显存,在本机软硬件环境下是448M,不同的CUDA版本或显卡型号固件显存不同。换言之,只要使用了GPU,就至少会占xxx M的显存,且这部分显存无法被释放。

2.2 显存激活与失活

给出以下代码,请问哪一个会报错?

代码Ax1 = torch.randn((200, 300, 200, 20), device=device)x2 = torch.randn((200, 300, 200, 20), device=device)x3 = torch.randn((200, 300, 200, 20), device=device)x4 = torch.randn((200, 300, 200, 20), device=device)x5 = torch.randn((200, 300, 200, 20), device=device)x6 = torch.randn((200, 300, 200, 20), device=device)代码Bx = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)

答案可以猜到,代码A报错了,这与CUDA显存的激活机制有关。可以把CUDA当前的数据空间看成一个队列,队列中有两种内存——激活内存(Activate Memory)和失活内存(Unactivate Memory)。当一块内存不再被变量所引用时,这块内存就由激活内存转为失活内存,但它仍然存在于这个数据队列中。

接下来,一块新的数据被添加进来,CUDA就会释放掉一部分失活内存,用于存放新的数据。如果新的数据占用空间大于队列中的所有失活内存,就会从显存再申请一部分空间添加到队列,相当于队列的容量被扩充了;如果新的数据占用空间约等于队列中的失活内存,那么CUDA显存的占用率就几乎不变

可以实验验证,运行

x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300), device=device)【已解决】探究CUDA out of memory背后原因,如何释放GPU显存?(想要探究的问题)

的显存占用为1364M,与单独运行

x = torch.randn((200, 300, 200, 20), device=device)

的1362M相比差不多,但是新的数据占用空间大于队列中的所有失活内存时

x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((300, 300, 300, 20), device=device)

显存占用就飙升到3422M。当数据队列达到某个阈值时,CUDA会触发垃圾回收机制,清理失活内存。

上述实验解释了深度学习中非常常见的代码

for images, labels in train_bar:images, labels = images.to(config.device), labels.to(config.device)# 梯度清零opt.zero_grad()# 正向传播outputs = model(images)# 计算损失loss = F.cross_entropy(outputs, labels)# 反向传播loss.backward()# 模型更新opt.step()

为什么能维持GPU显存不变。本质上,这就是上面代码B的执行过程。

2.3 释放GPU显存

运行下面的命令可以手动清理GPU数据队列中的失活内存

torch.cuda.empty_cache()

需要注意的是,上述命令可能要运行多次才会释放空间,比如

x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = 1

此时x指向了int型,所以GPU数据队列中的空间均未被变量引用,说明队列中全部都是失活内存,但此时运行nvidia-smi仍有2278M的占用,进一步运行torch.cuda.empty_cache()后即可恢复到448M的基础占用——虽然现在没有数据在GPU上,但固件已经开始运行,因此占用无法被释放。

3 问题总结

关于CUDA GPU显存管理的总结:

GPU显存占用率和存入的数据尺寸成正相关,越大的数据占用显存越多只要使用了GPU,就至少会占xxx M的显存,且这部分显存无法被释放当一块内存不再被变量所引用时,这块内存就由激活内存转为失活内存,但它仍然存在于这个数据队列中当数据队列达到某个阈值时,CUDA会触发垃圾回收机制,清理失活内存运行torch.cuda.empty_cache()可以手动清理失活内存

那么根据上述理论,就可以得到对应的问题解决方案

调小batch_size

本质上是防止GPU数据队列向显存申请的空间大于显存本身

检查是否有数据持续存入GPU而未释放

举个例子:

app = []for _ in range(1000):app.append(torch.randn((200, 300, 200, 20), device=device))

这里append函数相当于获得张量torch.randn((200, 300, 200, 20), device=device)的拷贝存入列表,因此每次存入的张量都会被隐式地引用,GPU持续地增加激活内存而不被释放,导致崩溃。

训练过程中的测试阶段和验证阶段前插入代码with torch.no_grad()

原理是不计算梯度,从而不用GPU加速运算,不会把数据再加到数据队列中

4 告别Bug

本文收录于《告别Bug》专栏,该专栏记录人工智能领域中各类Bug以备复查,文章形式为:问题背景 + 问题探索 + 问题解决,订阅专栏+关注博主后可通过下方名片联系我进入AI技术交流群帮忙解决问题


🔥 更多精彩专栏:

《ROS从入门到精通》《Pytorch深度学习实战》《机器学习强基计划》《运动规划实战精讲》…

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

本文链接地址:https://www.jiuchutong.com/zhishi/278092.html 转载请保留说明!

上一篇:Mac电脑登录支付宝无法输入密码的解决方法(苹果电脑付款方式设置)

下一篇:总结Linux中用于文本处理的awk、sed、grep命令用法(linux使用范围)

  • 资产损失税前扣除管理办法
  • 资金账簿印花税每年都要交吗?
  • 开票人和复核人收款人能是一个人吗
  • 个人给单位做事怎么开发票
  • 车船税在备注栏怎么报表
  • 2019所得税新政策
  • 科技型中小企业条件
  • 月末本年利润余额怎么算
  • 房产空置怎么判定
  • 人身意外伤害险保障范围
  • 公司注销后还会有事吗
  • 小型微利企业所得税优惠政策
  • 企业的业务招待费多了好还是少了好
  • 收到外单位奖励怎么回复
  • 租车公司的车能租吗
  • iphone无法打开网页怎么办
  • 关闭 ipv6
  • 期末进项税额和销项税额都有余额
  • 发票需要写真名吗
  • 苹果macbookpro分辨率是多少
  • 企业在进行会计核算时选择一种不多计资产
  • 收据能入账当凭证吗
  • reminder.exe - reminder是什么进程 有什么用
  • 鸿蒙系统公测版和beta版有什么区别
  • 固定资产折旧计算方法
  • 公司招的兼职员工怎么报个税
  • vue-html
  • 微信网页开发工具
  • css静态网页制作
  • laravel ajax
  • 企业所得税如何计算应纳税所得额
  • 配置nginx支持php
  • nodejs如何使用
  • 微信支付扫码支付顺序
  • 工程完工收到工程发票
  • 递延收益和其他应付款的区别
  • 材料暂估入账
  • 刷题笔贴吧
  • sqlserver 比较时间
  • mysql 扩展
  • 工资薪金个人所得税在哪里申报
  • 收到以前年度增值税退税账务处理怎么做账
  • 小规模纳税人减按1%政策
  • mssqlserver服务安装
  • 赠送给客户的礼品税法
  • 预收账款是什么要素
  • 什么是电子银行服务
  • 代销产品如何做会计分录
  • 会计学营业利润
  • 扣缴个人所得税怎么计算
  • 连锁零售药房
  • 信用减值损失6702
  • 合同负债属于什么账户
  • 酒店营业额成本比例
  • 新单位年终工作总结
  • 无形资产占公司比例
  • 读取mysql binlog
  • 如何查看mysql连接池
  • mysql 5.7.13 winx64安装配置方法图文教程(win10)
  • win8.1的开始菜单在哪
  • windows server 2008图片文件无法显示缩略图的解决方法
  • Linux httpd(apache)启动失败 解决办法
  • oracle数据库网络配置工具
  • linux shell 函数参数
  • 通知栏图标怎么变小
  • windows mobile
  • linuxweb服务器
  • cocos2dx-js
  • 有道词典encountered an improper argument
  • 高斯软件最新版本
  • cmd怎么复制上一条命令快捷键
  • 安卓源代码开放吗
  • 全面解析少女时代关系
  • python socket用法
  • javascript default
  • 车位办房产证需交多少税
  • 坚持问题导向的前提是
  • 企业代缴房产税可以入账吗
  • 小规模纳税人专票开1%还是3%
  • 港股印花税什么时候下调
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设