位置: IT常识 - 正文

【已解决】探究CUDA out of memory背后原因,如何释放GPU显存?(想要探究的问题)

编辑:rootadmin
原力计划【已解决】探究CUDA out of memory背后原因,如何释放GPU显存? 目录1 问题背景2 问题探索2.1 CUDA固有显存2.2 显存激活与失活2.3 释放GPU显存3 问题总结4 告别Bug1 问题背景

推荐整理分享【已解决】探究CUDA out of memory背后原因,如何释放GPU显存?(想要探究的问题),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:想要探究的问题,写出你探究的结果,写出你探究的结果,探究结果怎么答,探究一下,写出你探究的结果,探究并解决问题的方法翻译,探究并解决问题的方法翻译,内容如对您有帮助,希望把文章链接给更多的朋友!

研究过深度学习的同学,一定对类似下面这个CUDA显存溢出错误不陌生

RuntimeError: CUDA out of memory. Tried to allocate 916.00 MiB (GPU 0; 6.00 GiB total capacity; 4.47 GiB already allocated; 186.44 MiB free; 4.47 GiB reserved in total by PyTorch)

本文探究CUDA的内存管理机制,并总结该问题的解决办法

2 问题探索2.1 CUDA固有显存

在实验开始前,先清空环境,终端输入nvidia-smi

接下来向GPU存入一个小的张量

import torchdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')torch.randn((2, 3), device=device)

占用显存情况如下,共计448M

而当我们增大张量的尺寸,例如

torch.randn((200, 300, 200, 20), device=device)

此时GPU占用也随之上升,共计1362M

这表明:GPU显存占用率和存入的数据尺寸成正相关,越大的数据占用显存越多,这其实是废话,但是把这句话反过来:越小的数据占用显存越小吗?做个实验

torch.randn((1, 1), device=device)

仍然占用448M

事实上,这是因为CUDA运行时,其固件会占用一定的显存,在本机软硬件环境下是448M,不同的CUDA版本或显卡型号固件显存不同。换言之,只要使用了GPU,就至少会占xxx M的显存,且这部分显存无法被释放。

2.2 显存激活与失活

给出以下代码,请问哪一个会报错?

代码Ax1 = torch.randn((200, 300, 200, 20), device=device)x2 = torch.randn((200, 300, 200, 20), device=device)x3 = torch.randn((200, 300, 200, 20), device=device)x4 = torch.randn((200, 300, 200, 20), device=device)x5 = torch.randn((200, 300, 200, 20), device=device)x6 = torch.randn((200, 300, 200, 20), device=device)代码Bx = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)

答案可以猜到,代码A报错了,这与CUDA显存的激活机制有关。可以把CUDA当前的数据空间看成一个队列,队列中有两种内存——激活内存(Activate Memory)和失活内存(Unactivate Memory)。当一块内存不再被变量所引用时,这块内存就由激活内存转为失活内存,但它仍然存在于这个数据队列中。

接下来,一块新的数据被添加进来,CUDA就会释放掉一部分失活内存,用于存放新的数据。如果新的数据占用空间大于队列中的所有失活内存,就会从显存再申请一部分空间添加到队列,相当于队列的容量被扩充了;如果新的数据占用空间约等于队列中的失活内存,那么CUDA显存的占用率就几乎不变

可以实验验证,运行

x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300), device=device)【已解决】探究CUDA out of memory背后原因,如何释放GPU显存?(想要探究的问题)

的显存占用为1364M,与单独运行

x = torch.randn((200, 300, 200, 20), device=device)

的1362M相比差不多,但是新的数据占用空间大于队列中的所有失活内存时

x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((300, 300, 300, 20), device=device)

显存占用就飙升到3422M。当数据队列达到某个阈值时,CUDA会触发垃圾回收机制,清理失活内存。

上述实验解释了深度学习中非常常见的代码

for images, labels in train_bar:images, labels = images.to(config.device), labels.to(config.device)# 梯度清零opt.zero_grad()# 正向传播outputs = model(images)# 计算损失loss = F.cross_entropy(outputs, labels)# 反向传播loss.backward()# 模型更新opt.step()

为什么能维持GPU显存不变。本质上,这就是上面代码B的执行过程。

2.3 释放GPU显存

运行下面的命令可以手动清理GPU数据队列中的失活内存

torch.cuda.empty_cache()

需要注意的是,上述命令可能要运行多次才会释放空间,比如

x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = torch.randn((200, 300, 200, 20), device=device)x = 1

此时x指向了int型,所以GPU数据队列中的空间均未被变量引用,说明队列中全部都是失活内存,但此时运行nvidia-smi仍有2278M的占用,进一步运行torch.cuda.empty_cache()后即可恢复到448M的基础占用——虽然现在没有数据在GPU上,但固件已经开始运行,因此占用无法被释放。

3 问题总结

关于CUDA GPU显存管理的总结:

GPU显存占用率和存入的数据尺寸成正相关,越大的数据占用显存越多只要使用了GPU,就至少会占xxx M的显存,且这部分显存无法被释放当一块内存不再被变量所引用时,这块内存就由激活内存转为失活内存,但它仍然存在于这个数据队列中当数据队列达到某个阈值时,CUDA会触发垃圾回收机制,清理失活内存运行torch.cuda.empty_cache()可以手动清理失活内存

那么根据上述理论,就可以得到对应的问题解决方案

调小batch_size

本质上是防止GPU数据队列向显存申请的空间大于显存本身

检查是否有数据持续存入GPU而未释放

举个例子:

app = []for _ in range(1000):app.append(torch.randn((200, 300, 200, 20), device=device))

这里append函数相当于获得张量torch.randn((200, 300, 200, 20), device=device)的拷贝存入列表,因此每次存入的张量都会被隐式地引用,GPU持续地增加激活内存而不被释放,导致崩溃。

训练过程中的测试阶段和验证阶段前插入代码with torch.no_grad()

原理是不计算梯度,从而不用GPU加速运算,不会把数据再加到数据队列中

4 告别Bug

本文收录于《告别Bug》专栏,该专栏记录人工智能领域中各类Bug以备复查,文章形式为:问题背景 + 问题探索 + 问题解决,订阅专栏+关注博主后可通过下方名片联系我进入AI技术交流群帮忙解决问题


🔥 更多精彩专栏:

《ROS从入门到精通》《Pytorch深度学习实战》《机器学习强基计划》《运动规划实战精讲》…

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

本文链接地址:https://www.jiuchutong.com/zhishi/278092.html 转载请保留说明!

上一篇:Mac电脑登录支付宝无法输入密码的解决方法(苹果电脑付款方式设置)

下一篇:总结Linux中用于文本处理的awk、sed、grep命令用法(linux使用范围)

  • 分成收入计入什么科目
  • 实收资本增加印花税怎么算
  • 企业所得税怎么做账
  • 资产负债表里的应收账款怎么取数
  • 以前年度损益调整账务处理分录
  • 营业外支出增加的原因
  • 免抵退税申报资料情况表在哪下载
  • 利润为负数利润增长率怎么算
  • 应付票据和应付账款有什么区别
  • 向董事赠送礼品怎么写
  • 预付费卡税务处理
  • 存货盘亏计入什么收入
  • 办公楼贷款比例
  • 受托加工物资产包括哪些
  • 未分配利润转出会计分录
  • 股息率超过10%的公司
  • 建筑业异地预缴增值税
  • 物流公司的保险服务属于什么费用
  • 受赠人个人所得税
  • 税控盘管理费会计分录
  • 增值税申报交税后怎样补录未抵扣进项税
  • 报销抵扣联和发票联都需要吗
  • 研发支出的二级科目是什么
  • 离职后绩效奖金应该按照整月发吗
  • 劳务公司如何确定收入
  • 计提税金怎么提
  • u盘安装win8系统步骤
  • 进口应税消费品会计分录
  • 境外所得抵扣税怎么申报
  • php的数组函数
  • 折扣促销方式
  • 强化税收风险意识
  • php文件在线解密
  • win10回滚系统
  • 分支机构分摊税款的计算
  • 分页page
  • vuescan怎么安装
  • PHP实现微信无感登陆
  • php mysql_real_escape_string addslashes及mysql绑定参数防SQL注入攻击
  • 云服务器可以一直开着吗
  • 2023年第十一批专项债
  • 开源ei
  • 全连接神经网络是什么意思
  • 数据挖掘快速入门
  • 营业收入和应收账款增长过快,而应
  • 营业税金及附加税率
  • 发票整理归类汇总流程
  • 软件开发费属于什么费用
  • 长期借款的主要缺点
  • 固定资产售后回租融资租赁利息可以抵扣进项税额么
  • 研发失败能做加工企业吗
  • 公司对其他公司的投资怎么做账
  • 延期付款利息收入要交增值税吗
  • mysql注入的修复方式
  • 一般风险准备的科目类别
  • 发放工资凭证后多久到账
  • 税前减免
  • 计划成本下
  • 年终奖企业应该计入哪个会计年度
  • 处置固定资产和报废固定资产区别
  • mysql 临时表
  • sql连接两个表接查询sql语句
  • Windows7更改用户名
  • Win7 64位系统声卡重装过程中出现失败的解决方法
  • 重装系统开机出现几个系统
  • macos的磁盘
  • msoxmled.exe是什么软件
  • win8怎么切换界面
  • cocos2dx游戏案例
  • selenium csdn
  • cocos2dx openGL
  • unity3d的
  • angular动态生成表单
  • jquery 报表
  • js基于什么
  • javascript详细介绍
  • asx文件的作用
  • 安徽省工商总局
  • 车辆购置税查询怎么查
  • 国税申报密码忘了怎么办
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设