位置: IT常识 - 正文

【PaddleOCR-kie】一、关键信息抽取:使用VI-LayoutXLM模型推理预测(SER+RE)(paddle!)

编辑:rootadmin
【PaddleOCR-kie】一、关键信息抽取:使用VI-LayoutXLM模型推理预测(SER+RE)

推荐整理分享【PaddleOCR-kie】一、关键信息抽取:使用VI-LayoutXLM模型推理预测(SER+RE)(paddle!),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:paddle detection,paddleocr使用教程,paddle detection,paddle!,paddle oar,paddle!,paddlerocr,paddleocr api,内容如对您有帮助,希望把文章链接给更多的朋友!

背景:在训练自己数据集进行kie之前,想跑一下md里面的例程,但md教程内容混乱,而且同一个内容有多个手册,毕竟是多人合作的项目,可能是为了工程解耦,方便更新考虑……需要运行的模型和运行步骤散落在不用文件夹下的不同md里面……很无语,对于新手小白真的很不友好,因此在这里,按照一个正常工程的使用顺序,进行一个总结。

PaddleOCR进行关键信息抽取(kie),将是一个系列,分为多篇: 一:使用PP-Structure 文档分析中关键信息抽取,运行VI-LayoutXLM模型在XFUND_zh数据集上的推理模型,跑通推理 二:使用PPOCRLabel对自己的数据集进行关键信息提取的标注 三:进行自定义数据集的训练、自训练模型的评估、推理预测

这是第一篇:使用VI-LayoutXLM模型推理,测试关键信息抽取表单识别功能

文章目录工程中关键信息提取相关内容本文参考理论部分step0、环境准备step1、下载解压VI-LayoutXLM推理模型step2、下载XFUND数据集step3、使用模型进行预测(基于PaddleInference)单SER: 语义实体识别 (Semantic Entity Recognition)SER+RE: 关系抽取 (Relation Extraction)另一种方法(基于动态图的预测)仅预测SER模型SER + RE模型串联工程中关键信息提取相关内容

这里首先列出ppocr项目中与kie相关内容路径,方便查找,步骤从这些md中整合而来:

(本文主要参考这个)关键信息抽取-快速开始手册:.\ppstructure\kie\README_ch.md关键信息抽取全流程指南:.\ppstructure\kie\how_to_do_kie.md(自己模型训练评估与推理)关键信息抽取手册md.\doc\doc_ch\kie.md关键信息抽取算法-VI-LayoutXLM.\doc\doc_ch\algorithm_kie_vi_layoutxlm.md配置文件位于.\configs\kie\vi_layoutxlm\关键信息抽取数据集说明文档(介绍了FUNSD、XFUND、wildreceipt数据集三种).\doc\doc_ch\dataset\kie_datasets.md自己标注关键信息:PPOCRLabel使用文档./PPOCRLabel/README_ch.md本文参考

-(本文主要参考这个)PP-Structure 文档分析-关键信息抽取-快速开始手册:.\ppstructure\kie\README_ch.md 主要使用这个文件夹里面的内容

其他参考:https://blog.csdn.net/m0_63642362/article/details/128894464

理论部分

基于多模态模型的关键信息抽取任务有2种主要的解决方案。

(1)文本检测 + 文本识别 + 语义实体识别(SER) (2)文本检测 + 文本识别 + 语义实体识别(SER) + 关系抽取(RE)

关于上述解决方案的详细介绍,请参考关键信息抽取全流程指南:.\ppstructure\kie\how_to_do_kie.md 我们下面首先执行单SER

step0、环境准备

除了前期基础环境安装

git clone https://github.com/PaddlePaddle/PaddleOCR.gitcd PaddleOCRpip install -r requirements.txt

以外,还有一句

pip install -r ppstructure/kie/requirements.txtstep1、下载解压VI-LayoutXLM推理模型

环境配置这里不赘述,可以参考博主之前的文章,下面默认已经下载好ppocr项目文件夹了: 下表来自《关键信息抽取算法-VI-LayoutXLM》.\doc\doc_ch\algorithm_kie_vi_layoutxlm.md 下载保存推理模型到项目根目录名为model的文件夹里面

模型骨干网络任务配置文件hmean下载链接VI-LayoutXLMVI-LayoutXLM-baseSERser_vi_layoutxlm_xfund_zh_udml.yml93.19%训练模型/推理模型VI-LayoutXLMVI-LayoutXLM-baseREre_vi_layoutxlm_xfund_zh_udml.yml83.92%训练模型/推理模型

或直接在终端下载+解压

#下载解压ser_vi_layoutxlm_xfund_infer.tarwget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_infer.tartar -xvf ser_vi_layoutxlm_xfund_infer.tar#下载解压re_vi_layoutxlm_xfund_infer.tarwget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_infer.tartar -xvf re_vi_layoutxlm_xfund_infer.tar【PaddleOCR-kie】一、关键信息抽取:使用VI-LayoutXLM模型推理预测(SER+RE)(paddle!)

step2、下载XFUND数据集

下载XFUND数据集,放在根目录train_data文件夹里面, 下载解压:

# 准备XFUND数据集,对于推理,这里主要是为了获得字典文件class_list_xfun.txtmkdir ./PaddleOCR/train_datawget https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tartar -xf XFUND.tar

之所以叫train_data,是因为和配置文件里面的路径保持一致,方便不修改yaml文件而直接用

step3、使用模型进行预测(基于PaddleInference)

PaddleOCR/ppstructure/kie

单SER: 语义实体识别 (Semantic Entity Recognition)

使用前面下载好的SER推理模型

cd ppstructurepython3 kie/predict_kie_token_ser.py \ --kie_algorithm=LayoutXLM \ --ser_model_dir=../model/ser_vi_layoutxlm_xfund_infer \ --image_dir=./docs/kie/input/zh_val_42.jpg \ --ser_dict_path=../train_data/XFUND/class_list_xfun.txt \ --vis_font_path=../doc/fonts/simfang.ttf \ --ocr_order_method="tb-yx"

复制版

python3 kie/predict_kie_token_ser.py --kie_algorithm=LayoutXLM --ser_model_dir=../model/ser_vi_layoutxlm_xfund_infer --image_dir=./docs/kie/input/zh_val_42.jpg --ser_dict_path=../train_data/XFUND/class_list_xfun.txt --vis_font_path=../doc/fonts/simfang.ttf --ocr_order_method="tb-yx"ser_model_dir:我放在model文件夹内,image_dir:要预测的图片ser_dict_path:指向数据集的list文件位置vis_font_path:是字体文件夹

第一次运行会下载一些模型

可视化结果保存在ppstructure/output目录下 对应infer.txt

SER+RE: 关系抽取 (Relation Extraction)cd ppstructure python3 kie/predict_kie_token_ser_re.py \ --kie_algorithm=LayoutXLM \ --ser_model_dir=../model/ser_vi_layoutxlm_xfund_infer \ --re_model_dir=../model/re_vi_layoutxlm_xfund_infer\ --use_visual_backbone=False \ --image_dir=./docs/kie/input/zh_val_42.jpg \ --ser_dict_path=../train_data/XFUND/class_list_xfun.txt \ --vis_font_path=../doc/fonts/simfang.ttf \ --ocr_order_method="tb-yx"

复制版

python3 kie/predict_kie_token_ser_re.py --kie_algorithm=LayoutXLM --ser_model_dir=../model/ser_vi_layoutxlm_xfund_infer --re_model_dir=../model/re_vi_layoutxlm_xfund_infer --use_visual_backbone=False --image_dir=./docs/kie/input/zh_val_42.jpg --ser_dict_path=../train_data/XFUND/class_list_xfun.txt --vis_font_path=../doc/fonts/simfang.ttf --ocr_order_method="tb-yx"

我在NX盒子上推理会比较慢 RE在有些内容上还是比较弱的

另一种方法(基于动态图的预测)

手册里面还有一个使用tools/infer_kie_token_ser.py代码,PaddleOCR引擎的,使用预训练模型的,基于动态图的预测 不过经过实测,这里直接使用预训练模型和上面使用微调模型效果一样,毕竟没微调

#安装PaddleOCR引擎用于预测pip install paddleocr -Umkdir pretrained_modelcd pretrained_model# 下载并解压SER预训练模型wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/ser_vi_layoutxlm_xfund_pretrained.tar && tar -xf ser_vi_layoutxlm_xfund_pretrained.tar# 下载并解压RE预训练模型wget https://paddleocr.bj.bcebos.com/ppstructure/models/vi_layoutxlm/re_vi_layoutxlm_xfund_pretrained.tar && tar -xf re_vi_layoutxlm_xfund_pretrained.tar

如果希望使用OCR引擎,获取端到端的预测结果,可以使用下面的命令进行预测。

仅预测SER模型python3 tools/infer_kie_token_ser.py \ -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \ -o Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy \ Global.infer_img=./ppstructure/docs/kie/input/zh_val_42.jpgSER + RE模型串联python3 ./tools/infer_kie_token_ser_re.py \ -c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml \ -o Architecture.Backbone.checkpoints=./pretrained_model/re_vi_layoutxlm_xfund_pretrained/best_accuracy \ Global.infer_img=./train_data/XFUND/zh_val/image/zh_val_42.jpg \ -c_ser configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \ -o_ser Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy

(后续训练篇幅涉及)如果希望加载标注好的文本检测与识别结果,仅预测可以使用下面的命令进行预测。 仅预测SER模型 python3 tools/infer_kie_token_ser.py \ -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \ -o Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy \ Global.infer_img=./train_data/XFUND/zh_val/val.json \ Global.infer_mode=False

SER + RE模型串联 python3 ./tools/infer_kie_token_ser_re.py \ -c configs/kie/vi_layoutxlm/re_vi_layoutxlm_xfund_zh.yml \ -o Architecture.Backbone.checkpoints=./pretrained_model/re_vi_layoutxlm_xfund_pretrained/best_accuracy \ Global.infer_img=./train_data/XFUND/zh_val/val.json \ Global.infer_mode=False \ -c_ser configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml \ -o_ser Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy

end

ps:

在关键信息抽取手册md.\doc\doc_ch\kie.md也有提到使用预训练模型的预测(tools/infer_kie_token_ser.py) 我们在后面几篇再展开:具体内容摘抄: 如您通过 python3 tools/train.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml 完成了模型的训练过程。您可以使用如下命令进行中文模型预测。 python3 tools/infer_kie_token_ser.py -c configs/kie/vi_layoutxlm/ser_vi_layoutxlm_xfund_zh.yml -o Architecture.Backbone.checkpoints=./pretrained_model/ser_vi_layoutxlm_xfund_pretrained/best_accuracy Global.infer_img=./ppstructure/docs/kie/input/zh_val_42.jpg 使用tools/infer_kie_token_ser.py需要首先有训练产生的checkpoints : ./output/ser_vi_layoutxlm_xfund_zh/best_accuracy作为支持,所以只能在训练后使用,具体在本系列第三篇展开

本文链接地址:https://www.jiuchutong.com/zhishi/278752.html 转载请保留说明!

上一篇:笔记本投屏到电视教程(笔记本投屏到电视)

下一篇:DeskAdServ.exe是病毒程序吗 DeskAdServ进程是广告吗(deldir.exe是什么)

  • 华为nova9se建议买吗(华为nova9se建议配什么充电器)

    华为nova9se建议买吗(华为nova9se建议配什么充电器)

  • 如何卸载360安全卫士(如何卸载ie7)(如何卸载360安全大脑)

    如何卸载360安全卫士(如何卸载ie7)(如何卸载360安全大脑)

  • vivoy30电池毫安是多少(vivoy30电量是多少)

    vivoy30电池毫安是多少(vivoy30电量是多少)

  • 标题文字添加蓝色阴影边框怎么设置(标题文字添加蓝色边框怎么设置)

    标题文字添加蓝色阴影边框怎么设置(标题文字添加蓝色边框怎么设置)

  • 苹果12发布时间(苹果12发布时间中国)

    苹果12发布时间(苹果12发布时间中国)

  • 乐心手环充电没反应(乐心手环充电没有反应)

    乐心手环充电没反应(乐心手环充电没有反应)

  • 快手铁粉标志什么意思(快手上显示铁粉是什么意思)

    快手铁粉标志什么意思(快手上显示铁粉是什么意思)

  • 拉黑又移出能收到消息吗(拉黑又移出能收到信息吗)

    拉黑又移出能收到消息吗(拉黑又移出能收到信息吗)

  • 手机酷狗怎么设置歌词背景(手机酷狗怎么设置下载mp3格式的歌曲)

    手机酷狗怎么设置歌词背景(手机酷狗怎么设置下载mp3格式的歌曲)

  • 微信可以一次性删除多人吗(微信可以一次性加多少好友)

    微信可以一次性删除多人吗(微信可以一次性加多少好友)

  • 华为p40pro怎么省电(华为p40pro怎么省点)

    华为p40pro怎么省电(华为p40pro怎么省点)

  • 快手怎么把封禁的人取消关注(快手怎么把封禁提醒关掉)

    快手怎么把封禁的人取消关注(快手怎么把封禁提醒关掉)

  • 苹果11面容解锁怎么设置(苹果11面容解锁不灵敏)

    苹果11面容解锁怎么设置(苹果11面容解锁不灵敏)

  • 辽事通实名认证不了怎么办

    辽事通实名认证不了怎么办

  • oppo手机的录屏功能在哪里可以找到(oppo手机的录屏怎么关闭)

    oppo手机的录屏功能在哪里可以找到(oppo手机的录屏怎么关闭)

  • 小米手机什么是永恒模式(小米手机什么是解锁机)

    小米手机什么是永恒模式(小米手机什么是解锁机)

  • ipad伤眼还是手机伤眼(ipad伤眼还是手机)

    ipad伤眼还是手机伤眼(ipad伤眼还是手机)

  • 快手相册里照片怎么删(快手相册里照片模糊怎么回事)

    快手相册里照片怎么删(快手相册里照片模糊怎么回事)

  • 苹果11动态壁纸怎么不动(苹果11动态壁纸怎么不动按压不动怎么办)

    苹果11动态壁纸怎么不动(苹果11动态壁纸怎么不动按压不动怎么办)

  • 苹果max按哪里开机(苹果 iphonemax)

    苹果max按哪里开机(苹果 iphonemax)

  • icloud账户切换后照片没了(icloud换账号登录后有什么影响)

    icloud账户切换后照片没了(icloud换账号登录后有什么影响)

  • a03怎么切换中文(a03怎么使用)

    a03怎么切换中文(a03怎么使用)

  • vivo低电模式有什么用(vivox50低电模式)

    vivo低电模式有什么用(vivox50低电模式)

  • op手机怎么关机(OP手机怎么关机系统播报功能)

    op手机怎么关机(OP手机怎么关机系统播报功能)

  • 微博怎么进行提现(微博怎么进行提醒功能)

    微博怎么进行提现(微博怎么进行提醒功能)

  • 美拍如何去除系统水印(美拍如何去除系统声音)

    美拍如何去除系统水印(美拍如何去除系统声音)

  • 什么可以代替电容笔(什么可以代替电视机)

    什么可以代替电容笔(什么可以代替电视机)

  • 增值税发票如何开
  • 销售货物开票及销售收入
  • 小规模未达到起征点申报表怎么填
  • 个人独资企业增值税税率是多少
  • 附加税减免吗
  • 眼镜所属行业怎么填写
  • 意外伤害险进项税转出
  • 进口货物的应纳增值税
  • 如何进行银行存款的实质性程序
  • 增值税月末结转摘要写什么
  • 补提折旧以前年度损益调整汇算清缴怎么处理
  • 收到政府划拨的固定资产会计处理
  • 销售废旧物资增值税新政策
  • 用友软件作废凭证
  • 股权转让所得应纳税所得额
  • 软件开发公司怎么找客户
  • 一般纳税人简易征收范围
  • 增值税电子普通发票怎么下载
  • 调整上年少计提税金及附加
  • 在windows7环境中鼠标主要的三种操作方式是
  • 考勤扣款怎么算
  • 电脑不能连接wifi只能连宽带
  • vue3.0项目
  • php清除缓存的几个方法
  • php 字节
  • php自定义字段
  • php 格式化字符串
  • 小型企业资产负债表
  • 小规模纳税人本年累计金额
  • 语义分割用途
  • pinf命令
  • 结转生产成本是负数怎么办
  • 物流企业财务流程
  • 绿化养护合同交不交印花税
  • 支付劳务费未开具发票
  • 增值税报完了能改么
  • 预付开发票加油后还能开吗?
  • 政府收购企业的流程
  • mysql子查询详解
  • 食堂费用没有发票
  • 工程的直接成本包括哪些内容
  • 营业外支出属于费用类科目吗
  • 基本户收到零余额转款怎么做分录
  • 周转材料怎么做分录
  • 明细与发票
  • 手工凭证模板
  • 工程中标费用放哪个科目
  • 拆迁置换安置房
  • 税法上的营业收入怎么算
  • 税控盘冲红怎么操作
  • 上市公司做会计有什么好处
  • 房地产会计核算科目
  • access数据库sql语言
  • sqlserver存储过程声明变量
  • mysql语句性能优化
  • mysql优化技巧实战
  • sql判断字段是否有某个值
  • win2000停止服务
  • 经典璧纸
  • linux怎么调整屏幕大小
  • centos7光盘挂载方法
  • spyblast.exe - spyblast是什么进程 有何作用
  • 解决win10蓝屏
  • windows默认程序设置
  • linux开启ssh服务失败
  • 怎么配置nodejs
  • javascript括号
  • css ul
  • 安卓画图板
  • c# 抽象类的作用
  • vue router 传参
  • js设置标签内容
  • jQuery扩展实现text提示还能输入多少字节的方法
  • jquery遍历dom
  • zabbix 微信
  • Android调整按钮位置
  • 上海电子税务局怎么添加办税员
  • 利息收入通过什么科目核算
  • 纳税人的种类包括
  • 转卖车位土地增值税税率
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设