位置: IT常识 - 正文

异构图神经网络 RGCN、RGAT、HAN、GNN-FILM + PyG实现(异构图神经网络 电影推荐)

编辑:rootadmin
异构图神经网络 RGCN、RGAT、HAN、GNN-FILM + PyG实现 背景

推荐整理分享异构图神经网络 RGCN、RGAT、HAN、GNN-FILM + PyG实现(异构图神经网络 电影推荐),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:异构图神经网络 问题,异构图神经网络推荐系统,异构图神经网络化学领域,异构图神经网络的应用,异构图神经网络推荐系统,异构图神经网络推荐系统,异构图神经网络的服装搭配系统,异构图神经网络异常点检测,内容如对您有帮助,希望把文章链接给更多的朋友!

ICDM 2022 : 大规模电商图上的风险商品检测,要求在一张异构图上跑点分类,由于是异常检测,正负样本数据集在1比10,记录一下初赛过程。

数据

过程

赛事官方开源了PyG实现的baseline,拿过来直接用于预处理数据了,将图结构进行预处理后得到pt文件,使用pt文件做后续处理:

graph = torch.load(dataset) //dataset = "xxx.pt"graph[type].x = [num_nodes , 256] 点数*特征维度graph[type].y = [num_nodes] 标签=labelgraph[type].num_nodes = 数量 graph[type].maps = id 离散化映射:针对不同的type重新从0开始记录id# 异构图特殊存边方式,需要指定两个点的种类和边的种类。graph[(source_type, edge_type, dest_type)].edge_index = (source,dest) [2, num_edges] # 借鉴GraphSage的邻居采样dataload,每次训练不使用整张图,可以分batchtrain_loader = NeighborLoader(graph, input_nodes=('要分类的type', train_idx), num_neighbors=[a] * b 往外采样b层,每层每种边a个,内存够a可以填-1 , shuffle=True, batch_size=128)for batch in train_loader():batch['item'].batch_size = 128batch['item'].x =[num, 256] 前batch_size个是要预测的点,其他为采样出来的点。batch['item'].y =[num] 前batch_size个是预测点的label,其他无用。batch = batch.to_homogeneous() 转化为同构图batch.x = [所有点数量, 256] batch.edge_idx = [2, 所有边数量] 记录所有边batch.edge_type = [所有边数量] 记录边的类型model(batch.x,batch.edge_index,batch.edge_type)RGCN

RGCN比较简单,其实就是借鉴GCN处理同构图的思路,将其运用到处理异构图上。

GCN的基本思想就是为了计算下一层i节点的embedding,拿出上一层和i相邻的节点和i节点本身的embedding,将这些embedding乘上对应的网络要学习的变化权重矩阵W,前面再乘上单位矩阵和归一化矩阵,每一层的W用同一个,类比卷积。

RGCN很简单,异构图不是有很多种边吗,我就把不同种类的边分开来,每种关系一张图,这样这张图上边都是一样的了,理所当然使用GCN共享W矩阵,求出这种关系下节点i的embedding,最后所有关系的embedding来个融合,随便加个权,来个relu激活一下完成。

from torch_geometric.nn import RGCNConvclass RGCN(torch.nn.Module): def __init__(self, in_channels, hidden_channels, out_channels, n_layers=2, dropout=0.5): super().__init__() self.convs = torch.nn.ModuleList() self.relu = F.relu self.dropout = dropout self.convs.append(RGCNConv(in_channels, hidden_channels, num_relations)) for i in range(n_layers - 2): self.convs.append(RGCNConv(hidden_channels, hidden_channels, num_relations)) self.convs.append(RGCNConv(hidden_channels, out_channels, num_relations)) def forward(self, x, edge_index, edge_type): for conv, norm in zip(self.convs, self.norms): x = norm(conv(x, edge_index, edge_type)) x = F.relu(x) x = F.dropout(x, p=self.dropout, training=self.training return xRGAT异构图神经网络 RGCN、RGAT、HAN、GNN-FILM + PyG实现(异构图神经网络 电影推荐)

由于RGCN每一层W都是固定的,不够灵活,所以加入attention机制,毕竟万物皆可attention。

先说一下GAT在GCN上的改动,在计算i节点的embedding时,还是拿出和它邻近的节点和它自己的embedding,对于每一个这样的节点j,将i,j节点的embedding拼接,变成两倍长度,然后算一个self-attention,好像就是一个单层前馈网络,就得到节点j相对于节点i的权重。

RGAT一样,在关系上下功夫,利用关系特征再算一个attention。 最后两者做融合 RGAT可以看成是RGCN进化版,在attention不起作用的时候会退化成RGCN。

但实战和RGCN不分伯仲,甚至在本次竞赛的场景中逊色于RGCN。原因见论文:

RGAT通过attention机制比较好的完成任务之后,很难在损失机制反馈的作用下找到那个把attention设置成归一化常数后效果更好的点。RGCN在一些任务上会通过记忆样本的方式提升效果,但是RGAT模型更复杂发生这种情况的概率更低。from torch_geometric.nn import RGATConvclass RGAT(torch.nn.Module): def __init__(self, in_channels, hidden_channels, out_channels, n_layers=2, n_heads=3): super().__init__() self.convs = torch.nn.ModuleList() self.relu = F.relu self.convs.append(RGATConv(in_channels, hidden_channels, num_relations, heads=n_heads, concat=False)) for i in range(n_layers - 2): self.convs.append(RGATConv(hidden_channels, hidden_channels, num_relations, heads=n_heads, concat=False)) self.convs.append(RGATConv(hidden_channels, hidden_channels, num_relations, heads=n_heads, concat=False)) self.lin1 = torch.nn.Linear(hidden_channels, out_channels) def forward(self, x, edge_index, edge_type): for i, conv in enumerate(self.convs): x = conv(x, edge_index, edge_type) x = x.relu_() x = F.dropout(x, p=0.2, training=self.training x = self.lin1(x) return xHeterogeneous Graph Attention Network (HAN HGAT)

根据专家经验设置多条matapath(路径):点、边、点、边、点…

针对不同的matapath,节点i针对路径拿到其所有邻居节点j。

1.点和点计算attention并求和。使用多头注意力机制。

2.所有关系要聚合时算一个attention,其中q,w,b共享。 实验中效果很差,可能是我matapath设置的不好吧,而且多头注意力训练时间也太久了,我RGCN一个epoch只要5min,它要480min。

from torch_geometric.nn import HANConvlabeld_class = 'item'class HAN(torch.nn.Module): def __init__(self, in_channels: Union[int, Dict[str, int]], out_channels: int, hidden_channels=16, heads=4, n_layers=2): super().__init__() self.convs = torch.nn.ModuleList() self.relu = F.relu self.convs.append(HANConv(in_channels, hidden_channels, heads=heads, dropout=0.6, metadata=metada)) for i in range(n_layers - 1): self.convs.append(HANConv(hidden_channels, hidden_channels, heads=heads, dropout=0.6, metadata=metada)) self.lin = torch.nn.Linear(hidden_channels, out_channels) def forward(self, x_dict, edge_index_dict): for i, conv in enumerate(self.convs): x_dict = conv(x_dict, edge_index_dict) x_dict = self.lin(x_dict[labeled_class]) return x_dict GNN-Film(线性特征调整)

对比RGCN,改动的点与RGAT类似,同样想使得权重有所变化。加入了一个简单的前馈网络: 优点在于他在算权重的时候,加了一个仿射变换,相当于是用神经网络去计算参数。再用b和y去作为权重调整embedding。

实验中效果出奇的好,训练快,效果超越RGCN。

class GNNFilm(torch.nn.Module): def __init__(self, in_channels, hidden_channels, out_channels, n_layers, dropout=0.5): super().__init__() self.dropout = dropout self.convs = torch.nn.ModuleList() self.convs.append(FiLMConv(in_channels, hidden_channels, num_relations)) for _ in range(n_layers - 1): self.convs.append(FiLMConv(hidden_channels, hidden_channels, num_relations)) self.norms = torch.nn.ModuleList() for _ in range(n_layers): self.norms.append(BatchNorm1d(hidden_channels)) self.lin_l = torch.nn.Sequential(OrderedDict([ ('lin1', Linear(hidden_channels, int(hidden_channels//4), bias=True)), ('lrelu', torch.nn.LeakyReLU(0.2)), ('lin2', Linear(int(hidden_channels//4),out_channels, bias=True))])) def forward(self, x, edge_index, edge_type): for conv, norm in zip(self.convs, self.norms): x = norm(conv(x, edge_index, edge_type)) x = F.dropout(x, p=self.dropout, training=self.training) x = self.lin_l(x) return x总结

RGCN、RGAT、GNN-FILM代码替换十分简单,训练代码完全不用动,只要改模型代码即可,完全可以三者都尝试效果,HAN慎用,效果太吃matapath的设置,训练时间还长,不值得。

本文链接地址:https://www.jiuchutong.com/zhishi/283704.html 转载请保留说明!

上一篇:口腔发炎怎么办(口腔发炎怎么办最快最有效的方法)

下一篇:亡灵节上点缀公墓的万寿菊,墨西哥米却肯州 (© Irwin Barrett/Design Pics/Alamy)(亡灵节mid)

  • 小微企业税收新政
  • 税收饶让抵免的概念及特点
  • 对公账户转个人账户
  • 房地产开发企业预缴增值税
  • 公允价值变动损益属于什么科目
  • 货物及劳务税目
  • 包装报废会计处理
  • 增值税预征率记忆口诀
  • 所得税会计核算要点及程序
  • 混营纳税人有什么影响
  • 提示涉税风险该怎么弄
  • 甲公司聘用乙为业务经理
  • gdp等于消费加储蓄加税收
  • 在建工程暂估入库的账务处理
  • 软件服务费是什么
  • 商品盘点溢余短缺的核算方法有哪些?
  • 合理损耗如何计算单价?
  • 可转债转换为股权投资的企业所得税处理
  • 天猫魔投安装教程
  • win11时间不对
  • php面向对象优点,缺点
  • win10右键菜单管理在哪打开
  • PHP:pg_fetch_row()的用法_PostgreSQL函数
  • 消耗性生物资产减值准备一经计提不得转回
  • 向境外支付技术服务费怎里面的增值税怎么入账
  • typora修改背景颜色
  • php接口规则
  • 收到招标费用会计分录
  • php 生成opcode
  • 对税务总局意见建议
  • laravel elementui
  • php的框架有哪些
  • 商场代收款发票图片
  • 微信php开发教程
  • 公司借款给个人怎么写借条
  • 用谷歌浏览
  • php 弱类型变量是怎么实现的
  • python 3.4.3 shell
  • 卖出周转材料的分录怎么做
  • 税收收入退还书有时间限制吗
  • 未开票收入如何做账
  • pythonproperty
  • 用于职工福利的固定资产折旧
  • 收到赠送的货物会计分录
  • 资产负债表和利润表的勾稽关系
  • mysql的服务器
  • 异地预缴税款少交了城建税怎么办
  • 月末结存材料的实际成本例题
  • 如何调整去年的账
  • 购买税控盘的账务处理
  • 税控盘减免税款分录
  • 给客户的回扣怎么表达
  • 进口免税产品如何开票
  • 银行期初余额录少了怎么办
  • 持有至到期投资账务处理
  • 金蝶暂存凭证怎样转正常凭证
  • mysql从一个表导入记录到另一个表
  • ubuntu mysql 5.6版本的删除/安装/编码配置文件配置
  • mysql5.7.35
  • server2008 无法启动
  • U盘安装ubuntu的分区详细教程
  • os x10.8.5
  • win8系统如何卸载软件
  • windows10 2021预览版
  • linux在服务器领域的应用状况
  • win7系统自带的截屏工具怎么打开
  • cocos2dx入门
  • 同步数据和异步数据的区别
  • jquery的deferred
  • jquery1
  • js去除特殊字符
  • jquery发送json
  • android采用什么软件架构?
  • node通过express搭建自己的服务器
  • 你应该知道的几个问题
  • node.js + socket.io 实现点对点随机匹配聊天
  • Firefox window.close()的使用注意事项
  • jquery的底层原理
  • 监察室主任岗位职责
  • 山东国家税务局许本虎
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设