位置: IT常识 - 正文

阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf)

编辑:rootadmin
阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码) 目录赛题背景全代码导入包读取数据(训练数据前10000行,测试数据前100条)读取全部数据获取训练和测试数据切分40%数据用于线下验证交叉验证:评估估算器性能F1验证ShuffleSplit切分数据模型调参模糊矩阵不同的分类模型LR 模型KNN 模型tree树模型bagging模型随机森林模型ExTree模型AdaBoost模型GBDT模型VOTE模型投票lgb 模型xgb 模型自己封装模型Stacking,Bootstrap,Bagging技术实践测试自己封装的模型类天猫复购场景实战读取特征数据设置模型参数模型训练预测结果保存结果赛题背景

推荐整理分享阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:阿里云天池大赛赛题解析百度云,阿里云天池大赛pdf,阿里云天池大赛奖金,阿里云天池大赛官网,阿里云天池大赛pdf,阿里云天池大赛含金量,阿里云天池大赛赛题解析电子版,阿里云天池大赛含金量,内容如对您有帮助,希望把文章链接给更多的朋友!

商家一般会在 “双十一”,“双十二” 等节日进行大规模的促销,比如各种折扣券和现金券。然而,被低价、折扣、各种让利吸引的用户往往在这次消费之后就再也没有购买,主要为了“薅羊毛”,针对这些用户的促销并没有带来未来销量的提高,只是增加了相应的营销成本。因此店铺有迫切的需求,想知道哪些用户可能会成为重复购买其店铺商品的忠诚用户,以便对这些有潜力的用户进行精准营销,以降低促销成本,提高投资回报率。 这个赛题的目标就是给一堆数据(用户、店铺的历史行为),然后用训练好的模型预测新用户是否会在6个月内再次从同一店铺购买商品。所以这是一个典型的二分类问题。 常见的分类算法:朴素贝叶斯,决策树,支持向量机,KNN,逻辑回归等等; 集成学习:随机森林,GBDT(梯度提升决策树),Adaboot,XGBoost,LightGBM,CatBoost等等; 神经网络:MLP(多层神经网络),DL(深度学习)等。 本赛题的数据量不大,一把用不到深度学习,根据赛题特点,集成算法,尤其是XGBoost,LightGBM,CatBoost等算法效果会比较好。

阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf)

全代码

一个典型的机器学习实战算法基本包括 1) 数据处理,2) 特征选取、优化,和 3) 模型选取、验证、优化。 因为 “数据和特征决定了机器学习的上限,而模型和算法知识逼近这个上限而已。” 所以在解决一个机器学习问题时大部分时间都会花在数据处理和特征优化上。 大家最好在jupyter notebook上一段一段地跑下面的代码,加深理解。 机器学习的基本知识可以康康我的其他文章哦 好康的。

导入包import pandas as pdimport numpy as npimport warningswarnings.filterwarnings("ignore") 读取数据(训练数据前10000行,测试数据前100条)train_data = pd.read_csv('train_all.csv',nrows=10000)test_data = pd.read_csv('test_all.csv',nrows=100)train_data.head()test_data.head()

读取全部数据train_data.columns获取训练和测试数据features_columns = [col for col in train_data.columns if col not in ['user_id','label']]train = train_data[features_columns].valuestest = test_data[features_columns].valuestarget =train_data['label'].values切分40%数据用于线下验证from sklearn.model_selection import train_test_splitfrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)print(X_train.shape, y_train.shape)print(X_test.shape, y_test.shape)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test) 交叉验证:评估估算器性能from sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)scores = cross_val_score(clf, train, target, cv=5)print(scores)print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) F1验证from sklearn import metricsfrom sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)scores = cross_val_score(clf, train, target, cv=5, scoring='f1_macro')print(scores) print("F1: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))ShuffleSplit切分数据from sklearn.model_selection import ShuffleSplitfrom sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)cv = ShuffleSplit(n_splits=5, test_size=0.3, random_state=0)cross_val_score(clf, train, target, cv=cv) 模型调参from sklearn.model_selection import train_test_splitfrom sklearn.model_selection import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.ensemble import RandomForestClassifier# Split the dataset in two equal partsX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.5, random_state=0)# model clf = RandomForestClassifier(n_jobs=-1)# Set the parameters by cross-validationtuned_parameters = { 'n_estimators': [50, 100, 200]# ,'criterion': ['gini', 'entropy']# ,'max_depth': [2, 5]# ,'max_features': ['log2', 'sqrt', 'int']# ,'bootstrap': [True, False]# ,'warm_start': [True, False] }scores = ['precision']for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(clf, tuned_parameters, cv=5, scoring='%s_macro' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print()模糊矩阵import itertoolsimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import confusion_matrixfrom sklearn.ensemble import RandomForestClassifier# label nameclass_names = ['no-repeat', 'repeat']# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)# Run classifier, using a model that is too regularized (C too low) to see# the impact on the resultsclf = RandomForestClassifier(n_jobs=-1)y_pred = clf.fit(X_train, y_train).predict(X_test)def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.tight_layout()# Compute confusion matrixcnf_matrix = confusion_matrix(y_test, y_pred)np.set_printoptions(precision=2)# Plot non-normalized confusion matrixplt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization')# Plot normalized confusion matrixplt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix')plt.show()

from sklearn.metrics import classification_reportfrom sklearn.ensemble import RandomForestClassifier# label nameclass_names = ['no-repeat', 'repeat']# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)# Run classifier, using a model that is too regularized (C too low) to see# the impact on the resultsclf = RandomForestClassifier(n_jobs=-1)y_pred = clf.fit(X_train, y_train).predict(X_test)print(classification_report(y_test, y_pred, target_names=class_names))

不同的分类模型LR 模型from sklearn.linear_model import LinearRegressionfrom sklearn.linear_model import LogisticRegressionfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X_train, y_train)clf.score(X_test, y_test)KNN 模型from sklearn.neighbors import KNeighborsClassifierfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)clf = KNeighborsClassifier(n_neighbors=3).fit(X_train, y_train)clf.score(X_test, y_test)tree树模型from sklearn import tree# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = tree.DecisionTreeClassifier()clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)bagging模型from sklearn.ensemble import BaggingClassifierfrom sklearn.neighbors import KNeighborsClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)随机森林模型from sklearn.ensemble import RandomForestClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = clf = RandomForestClassifier(n_estimators=10, max_depth=3, min_samples_split=12, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)ExTree模型from sklearn.ensemble import ExtraTreesClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = ExtraTreesClassifier(n_estimators=10, max_depth=None, min_samples_split=2, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)clf.n_features_clf.feature_importances_[:10]AdaBoost模型from sklearn.ensemble import AdaBoostClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = AdaBoostClassifier(n_estimators=10)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)GBDT模型from sklearn.ensemble import GradientBoostingClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, max_depth=1, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)VOTE模型投票from sklearn import datasetsfrom sklearn.model_selection import cross_val_scorefrom sklearn.linear_model import LogisticRegressionfrom sklearn.naive_bayes import GaussianNBfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.ensemble import VotingClassifierfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)y = targetclf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=1)clf2 = RandomForestClassifier(n_estimators=50, random_state=1)clf3 = GaussianNB()eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']): scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy') print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))lgb 模型import lightgbmX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)clf = lightgbmtrain_matrix = clf.Dataset(X_train, label=y_train)test_matrix = clf.Dataset(X_test, label=y_test)params = { 'boosting_type': 'gbdt', #'boosting_type': 'dart', 'objective': 'multiclass', 'metric': 'multi_logloss', 'min_child_weight': 1.5, 'num_leaves': 2**5, 'lambda_l2': 10, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'learning_rate': 0.03, 'tree_method': 'exact', 'seed': 2017, "num_class": 2, 'silent': True, }num_round = 10000early_stopping_rounds = 100model = clf.train(params, train_matrix, num_round, valid_sets=test_matrix, early_stopping_rounds=early_stopping_rounds)pre= model.predict(X_valid,num_iteration=model.best_iteration)print('score : ', np.mean((pre[:,1]>0.5)==y_valid))xgb 模型import xgboostX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)clf = xgboosttrain_matrix = clf.DMatrix(X_train, label=y_train, missing=-1)test_matrix = clf.DMatrix(X_test, label=y_test, missing=-1)z = clf.DMatrix(X_valid, label=y_valid, missing=-1)params = {'booster': 'gbtree', 'objective': 'multi:softprob', 'eval_metric': 'mlogloss', 'gamma': 1, 'min_child_weight': 1.5, 'max_depth': 5, 'lambda': 100, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'eta': 0.03, 'tree_method': 'exact', 'seed': 2017, "num_class": 2 }num_round = 10000early_stopping_rounds = 100watchlist = [(train_matrix, 'train'), (test_matrix, 'eval') ]model = clf.train(params, train_matrix, num_boost_round=num_round, evals=watchlist, early_stopping_rounds=early_stopping_rounds )pre = model.predict(z,ntree_limit=model.best_ntree_limit)print('score : ', np.mean((pre[:,1]>0.3)==y_valid))自己封装模型Stacking,Bootstrap,Bagging技术实践""" 导入相关包"""import pandas as pdimport numpy as npimport lightgbm as lgbfrom sklearn.metrics import f1_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import StratifiedKFoldclass SBBTree(): """ SBBTree Stacking,Bootstap,Bagging """ def __init__( self, params, stacking_num, bagging_num, bagging_test_size, num_boost_round, early_stopping_rounds ): """ Initializes the SBBTree. Args: params : lgb params. stacking_num : k_flod stacking. bagging_num : bootstrap num. bagging_test_size : bootstrap sample rate. num_boost_round : boost num. early_stopping_rounds : early_stopping_rounds. """ self.params = params self.stacking_num = stacking_num self.bagging_num = bagging_num self.bagging_test_size = bagging_test_size self.num_boost_round = num_boost_round self.early_stopping_rounds = early_stopping_rounds self.model = lgb self.stacking_model = [] self.bagging_model = [] def fit(self, X, y): """ fit model. """ if self.stacking_num > 1: layer_train = np.zeros((X.shape[0], 2)) self.SK = StratifiedKFold(n_splits=self.stacking_num, shuffle=True, random_state=1) for k,(train_index, test_index) in enumerate(self.SK.split(X, y)): X_train = X[train_index] y_train = y[train_index] X_test = X[test_index] y_test = y[test_index] lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) gbm = lgb.train(self.params, lgb_train, num_boost_round=self.num_boost_round, valid_sets=lgb_eval, early_stopping_rounds=self.early_stopping_rounds) self.stacking_model.append(gbm) pred_y = gbm.predict(X_test, num_iteration=gbm.best_iteration) layer_train[test_index, 1] = pred_y X = np.hstack((X, layer_train[:,1].reshape((-1,1)))) else: pass for bn in range(self.bagging_num): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.bagging_test_size, random_state=bn) lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) gbm = lgb.train(self.params, lgb_train, num_boost_round=10000, valid_sets=lgb_eval, early_stopping_rounds=200) self.bagging_model.append(gbm) def predict(self, X_pred): """ predict test data. """ if self.stacking_num > 1: test_pred = np.zeros((X_pred.shape[0], self.stacking_num)) for sn,gbm in enumerate(self.stacking_model): pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration) test_pred[:, sn] = pred X_pred = np.hstack((X_pred, test_pred.mean(axis=1).reshape((-1,1)))) else: pass for bn,gbm in enumerate(self.bagging_model): pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration) if bn == 0: pred_out=pred else: pred_out+=pred return pred_out/self.bagging_num测试自己封装的模型类""" TEST CODE"""from sklearn.datasets import make_classificationfrom sklearn.datasets import load_breast_cancerfrom sklearn.datasets import make_gaussian_quantilesfrom sklearn import metricsfrom sklearn.metrics import f1_score# X, y = make_classification(n_samples=1000, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=1)X, y = make_gaussian_quantiles(mean=None, cov=1.0, n_samples=1000, n_features=50, n_classes=2, shuffle=True, random_state=2)# data = load_breast_cancer()# X, y = data.data, data.targetX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 9, 'learning_rate': 0.03, 'feature_fraction_seed': 2, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_data': 20, 'min_hessian': 1, 'verbose': -1, 'silent': 0 }# test 1model = SBBTree(params=params, stacking_num=2, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X,y)X_pred = X[0].reshape((1,-1))pred=model.predict(X_pred)print('pred')print(pred)print('TEST 1 ok')# test 1model = SBBTree(params, stacking_num=1, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred1=model.predict(X_test)# test 2 model = SBBTree(params, stacking_num=1, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred2=model.predict(X_test)# test 3 model = SBBTree(params, stacking_num=5, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred3=model.predict(X_test)# test 4 model = SBBTree(params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred4=model.predict(X_test)fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred1, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred2, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred3, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred4, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))# auc: 0.7281621243885396# auc: 0.7710471146419509# auc: 0.7894369046305492# auc: 0.8084519474787597天猫复购场景实战读取特征数据import pandas as pdimport numpy as npimport lightgbm as lgbfrom sklearn.metrics import f1_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import StratifiedKFoldtrain_data = pd.read_csv('train_all.csv',nrows=10000)test_data = pd.read_csv('test_all.csv',nrows=100)features_columns = [col for col in train_data.columns if col not in ['user_id','label']]train = train_data[features_columns].valuestest = test_data[features_columns].valuestarget =train_data['label'].values设置模型参数params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 9, 'learning_rate': 0.03, 'feature_fraction_seed': 2, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_data': 20, 'min_hessian': 1, 'verbose': -1, 'silent': 0 }model = SBBTree(params=params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)模型训练model.fit(train, target)预测结果pred = model.predict(test)df_out = pd.DataFrame()df_out['user_id'] = test_data['user_id'].astype(int)df_out['predict_prob'] = preddf_out.head()保存结果""" 保留数据头,不保存index"""df_out.to_csv('df_out.csv',header=True,index=False)print('save OK!')

以上内容和代码全部来自于《阿里云天池大赛赛题解析(机器学习篇)》这本好书,十分推荐大家去阅读原书!

本文链接地址:https://www.jiuchutong.com/zhishi/287129.html 转载请保留说明!

上一篇:CVPR2023最新论文 (含语义分割、扩散模型、多模态、预训练、MAE等方向)(cvpr2017最佳论文)

下一篇:vue3中数据更新了,但是视图没有更新的5中方案(vue数据更新会触发什么生命周期)

  • 钉钉怎么交电子版作文(钉钉电子版怎么弄)

    钉钉怎么交电子版作文(钉钉电子版怎么弄)

  • 华为matebookd自带系统吗(华为matebook带d和不带d的区别)

    华为matebookd自带系统吗(华为matebook带d和不带d的区别)

  • 苹果手机耳机模式退不出来了怎么解决(苹果手机耳机模式怎么调回来)

    苹果手机耳机模式退不出来了怎么解决(苹果手机耳机模式怎么调回来)

  • 手机相册收藏的照片在哪里找(手机相册收藏的图片删除了还能找到吗)

    手机相册收藏的照片在哪里找(手机相册收藏的图片删除了还能找到吗)

  • 1+7pro和1+7对比(1+7pro对比1+7tpro)

    1+7pro和1+7对比(1+7pro对比1+7tpro)

  • 辽通卡微信可以充值吗(辽通卡怎么插)

    辽通卡微信可以充值吗(辽通卡怎么插)

  • OPPO手机怎么录制视频声音(oppo手机怎么录入门禁卡)

    OPPO手机怎么录制视频声音(oppo手机怎么录入门禁卡)

  • 三星g9880是什么型号(三星g9880怎么样)

    三星g9880是什么型号(三星g9880怎么样)

  • 电脑right键在哪(right哪个键)

    电脑right键在哪(right哪个键)

  • 苹果7和苹果x对比(苹果7跟苹果x对比)

    苹果7和苹果x对比(苹果7跟苹果x对比)

  • 在word中如何删除空白页(在word中如何删除分节符)

    在word中如何删除空白页(在word中如何删除分节符)

  • 华为荣耀8x有没有红外线功能(华为荣耀8X有没有)

    华为荣耀8x有没有红外线功能(华为荣耀8X有没有)

  • 佳能相机怎么开机(佳能相机怎么开辅助线)

    佳能相机怎么开机(佳能相机怎么开辅助线)

  • 华为手机无法下载彩信怎么办(华为手机无法下拉设置栏)

    华为手机无法下载彩信怎么办(华为手机无法下拉设置栏)

  • 淘宝怎么看差评(淘宝怎么看差评率买家)

    淘宝怎么看差评(淘宝怎么看差评率买家)

  • 图片设置四周型环绕怎么设置(图片设置四周型环绕位置为两边)

    图片设置四周型环绕怎么设置(图片设置四周型环绕位置为两边)

  • 磁盘mbr和gpt有什么区别(mbr磁盘和gpt磁盘有什么不同)

    磁盘mbr和gpt有什么区别(mbr磁盘和gpt磁盘有什么不同)

  • word文档页面位置调整(word文档页面位置怎么左右拉动)

    word文档页面位置调整(word文档页面位置怎么左右拉动)

  • 小米cc9pro支持光学防抖吗(小米cc9pro支持dc调光吗)

    小米cc9pro支持光学防抖吗(小米cc9pro支持dc调光吗)

  • 淘宝什么是虚拟单(淘宝什么是虚拟物品)

    淘宝什么是虚拟单(淘宝什么是虚拟物品)

  • 华为nove5i可以双击亮屏吗(华为nova5i可以设置双系统吗)

    华为nove5i可以双击亮屏吗(华为nova5i可以设置双系统吗)

  • ZigBee的特点(zigbee的技术特点)

    ZigBee的特点(zigbee的技术特点)

  • iqoo手机怎么开启液冷散热(iqoo手机怎么开闪光灯)

    iqoo手机怎么开启液冷散热(iqoo手机怎么开闪光灯)

  • 陌陌飞碟多少星光(陌陌飞屋奇遇多少钱)

    陌陌飞碟多少星光(陌陌飞屋奇遇多少钱)

  • loss.item()用法和注意事项详解(loss for)

    loss.item()用法和注意事项详解(loss for)

  • 原材料不良品的处理流程
  • 收到货款没开票做应收还还应付
  • 国家税务局发票查询真伪
  • 货币资金项目应根据账户的期末余额合计填列
  • 清包工一般纳税人简易计税能开专票
  • 跨区域缴纳社保
  • 工会经费滞纳金是多少
  • 确认应收账款不确认收入
  • 处置全资子公司税务处理
  • 风险纳税人不允许领用发票
  • 2017年个税税率表及个税计算公式
  • 建筑工程安装合同
  • 关联关系的判定标准
  • 跨地区经营产生的GDP
  • 物业公司停车费怎么开票
  • 准则大家学第十二集
  • 经营性租入的设备是资产吗
  • 未取得发票怎么做纳税调增操作
  • 投资税收抵免
  • 未开票收入纳税
  • 建筑业预交增值税最新政策
  • 小规模免征增值税政策2022
  • 财付通转款会计分录
  • 金蝶界面设置
  • 固定资产一次计入成本费用
  • 投资者与被投资者的名人
  • 利用Windows Media将二进制文件转音频
  • 电脑qq音乐声音小怎么回事
  • 应收账款坏账收回影响利润么
  • osx无法安装怎么办
  • php数组有哪几种类型
  • iphone助手
  • 承租集体土地如何确权
  • php数组函数,选班长
  • 结转已销产品实收成本
  • php两个$什么意思
  • php解压压缩包
  • 汇算清缴的表在哪里
  • 优化in
  • php shell_exec()
  • uniapp 手写识别
  • route命令的作用
  • es restful api文档
  • php 输出
  • 劳动法中迟到半小时扣多少钱
  • 销售包装什么意思
  • mongodb bi
  • 混合销售行为的例子
  • 电子承兑提示付款提前几天
  • SQL Server解析XML数据的方法详解
  • mysql数据库连接方式
  • sqlalchemy mongodb
  • 先给发票后付款做账
  • 子公司自购买日开始持续计算的可辨认净资产的公允价值
  • 简易征收 简易计税
  • 带有折扣的增值税专用发票图片
  • 公司支付宝账户提现需要手续费吗
  • 其他应付款的有
  • sqlserver存储过程在哪里
  • MySQL中的max()函数使用教程
  • sql常用的语句大全
  • 在一台服务器上安装软件
  • mysql保存命令
  • ubuntu安装ubuntu-desktop
  • mac 显示器
  • 菜鸟flask
  • windows安装服务器
  • linux sed -s
  • windows多屏显示
  • python基本用法
  • Bullet(Cocos2dx)之增加调试绘制PhysicsDraw3D
  • dos命令中运行文件的命令
  • 批处理应用实例
  • 安卓系统休眠设置在哪
  • python例题讲解
  • js面向对象的原理
  • android获取屏幕大小
  • 房地产开发企业会计制度
  • 已代扣代缴个人所得税,他人还需要缴纳个人所得税吗?
  • 税法查询系统
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设