位置: IT常识 - 正文

阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf)

编辑:rootadmin
阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码) 目录赛题背景全代码导入包读取数据(训练数据前10000行,测试数据前100条)读取全部数据获取训练和测试数据切分40%数据用于线下验证交叉验证:评估估算器性能F1验证ShuffleSplit切分数据模型调参模糊矩阵不同的分类模型LR 模型KNN 模型tree树模型bagging模型随机森林模型ExTree模型AdaBoost模型GBDT模型VOTE模型投票lgb 模型xgb 模型自己封装模型Stacking,Bootstrap,Bagging技术实践测试自己封装的模型类天猫复购场景实战读取特征数据设置模型参数模型训练预测结果保存结果赛题背景

推荐整理分享阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:阿里云天池大赛赛题解析百度云,阿里云天池大赛pdf,阿里云天池大赛奖金,阿里云天池大赛官网,阿里云天池大赛pdf,阿里云天池大赛含金量,阿里云天池大赛赛题解析电子版,阿里云天池大赛含金量,内容如对您有帮助,希望把文章链接给更多的朋友!

商家一般会在 “双十一”,“双十二” 等节日进行大规模的促销,比如各种折扣券和现金券。然而,被低价、折扣、各种让利吸引的用户往往在这次消费之后就再也没有购买,主要为了“薅羊毛”,针对这些用户的促销并没有带来未来销量的提高,只是增加了相应的营销成本。因此店铺有迫切的需求,想知道哪些用户可能会成为重复购买其店铺商品的忠诚用户,以便对这些有潜力的用户进行精准营销,以降低促销成本,提高投资回报率。 这个赛题的目标就是给一堆数据(用户、店铺的历史行为),然后用训练好的模型预测新用户是否会在6个月内再次从同一店铺购买商品。所以这是一个典型的二分类问题。 常见的分类算法:朴素贝叶斯,决策树,支持向量机,KNN,逻辑回归等等; 集成学习:随机森林,GBDT(梯度提升决策树),Adaboot,XGBoost,LightGBM,CatBoost等等; 神经网络:MLP(多层神经网络),DL(深度学习)等。 本赛题的数据量不大,一把用不到深度学习,根据赛题特点,集成算法,尤其是XGBoost,LightGBM,CatBoost等算法效果会比较好。

阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf)

全代码

一个典型的机器学习实战算法基本包括 1) 数据处理,2) 特征选取、优化,和 3) 模型选取、验证、优化。 因为 “数据和特征决定了机器学习的上限,而模型和算法知识逼近这个上限而已。” 所以在解决一个机器学习问题时大部分时间都会花在数据处理和特征优化上。 大家最好在jupyter notebook上一段一段地跑下面的代码,加深理解。 机器学习的基本知识可以康康我的其他文章哦 好康的。

导入包import pandas as pdimport numpy as npimport warningswarnings.filterwarnings("ignore") 读取数据(训练数据前10000行,测试数据前100条)train_data = pd.read_csv('train_all.csv',nrows=10000)test_data = pd.read_csv('test_all.csv',nrows=100)train_data.head()test_data.head()

读取全部数据train_data.columns获取训练和测试数据features_columns = [col for col in train_data.columns if col not in ['user_id','label']]train = train_data[features_columns].valuestest = test_data[features_columns].valuestarget =train_data['label'].values切分40%数据用于线下验证from sklearn.model_selection import train_test_splitfrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)print(X_train.shape, y_train.shape)print(X_test.shape, y_test.shape)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test) 交叉验证:评估估算器性能from sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)scores = cross_val_score(clf, train, target, cv=5)print(scores)print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) F1验证from sklearn import metricsfrom sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)scores = cross_val_score(clf, train, target, cv=5, scoring='f1_macro')print(scores) print("F1: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))ShuffleSplit切分数据from sklearn.model_selection import ShuffleSplitfrom sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)cv = ShuffleSplit(n_splits=5, test_size=0.3, random_state=0)cross_val_score(clf, train, target, cv=cv) 模型调参from sklearn.model_selection import train_test_splitfrom sklearn.model_selection import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.ensemble import RandomForestClassifier# Split the dataset in two equal partsX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.5, random_state=0)# model clf = RandomForestClassifier(n_jobs=-1)# Set the parameters by cross-validationtuned_parameters = { 'n_estimators': [50, 100, 200]# ,'criterion': ['gini', 'entropy']# ,'max_depth': [2, 5]# ,'max_features': ['log2', 'sqrt', 'int']# ,'bootstrap': [True, False]# ,'warm_start': [True, False] }scores = ['precision']for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(clf, tuned_parameters, cv=5, scoring='%s_macro' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print()模糊矩阵import itertoolsimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import confusion_matrixfrom sklearn.ensemble import RandomForestClassifier# label nameclass_names = ['no-repeat', 'repeat']# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)# Run classifier, using a model that is too regularized (C too low) to see# the impact on the resultsclf = RandomForestClassifier(n_jobs=-1)y_pred = clf.fit(X_train, y_train).predict(X_test)def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.tight_layout()# Compute confusion matrixcnf_matrix = confusion_matrix(y_test, y_pred)np.set_printoptions(precision=2)# Plot non-normalized confusion matrixplt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization')# Plot normalized confusion matrixplt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix')plt.show()

from sklearn.metrics import classification_reportfrom sklearn.ensemble import RandomForestClassifier# label nameclass_names = ['no-repeat', 'repeat']# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)# Run classifier, using a model that is too regularized (C too low) to see# the impact on the resultsclf = RandomForestClassifier(n_jobs=-1)y_pred = clf.fit(X_train, y_train).predict(X_test)print(classification_report(y_test, y_pred, target_names=class_names))

不同的分类模型LR 模型from sklearn.linear_model import LinearRegressionfrom sklearn.linear_model import LogisticRegressionfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X_train, y_train)clf.score(X_test, y_test)KNN 模型from sklearn.neighbors import KNeighborsClassifierfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)clf = KNeighborsClassifier(n_neighbors=3).fit(X_train, y_train)clf.score(X_test, y_test)tree树模型from sklearn import tree# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = tree.DecisionTreeClassifier()clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)bagging模型from sklearn.ensemble import BaggingClassifierfrom sklearn.neighbors import KNeighborsClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)随机森林模型from sklearn.ensemble import RandomForestClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = clf = RandomForestClassifier(n_estimators=10, max_depth=3, min_samples_split=12, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)ExTree模型from sklearn.ensemble import ExtraTreesClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = ExtraTreesClassifier(n_estimators=10, max_depth=None, min_samples_split=2, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)clf.n_features_clf.feature_importances_[:10]AdaBoost模型from sklearn.ensemble import AdaBoostClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = AdaBoostClassifier(n_estimators=10)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)GBDT模型from sklearn.ensemble import GradientBoostingClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, max_depth=1, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)VOTE模型投票from sklearn import datasetsfrom sklearn.model_selection import cross_val_scorefrom sklearn.linear_model import LogisticRegressionfrom sklearn.naive_bayes import GaussianNBfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.ensemble import VotingClassifierfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)y = targetclf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=1)clf2 = RandomForestClassifier(n_estimators=50, random_state=1)clf3 = GaussianNB()eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']): scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy') print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))lgb 模型import lightgbmX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)clf = lightgbmtrain_matrix = clf.Dataset(X_train, label=y_train)test_matrix = clf.Dataset(X_test, label=y_test)params = { 'boosting_type': 'gbdt', #'boosting_type': 'dart', 'objective': 'multiclass', 'metric': 'multi_logloss', 'min_child_weight': 1.5, 'num_leaves': 2**5, 'lambda_l2': 10, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'learning_rate': 0.03, 'tree_method': 'exact', 'seed': 2017, "num_class": 2, 'silent': True, }num_round = 10000early_stopping_rounds = 100model = clf.train(params, train_matrix, num_round, valid_sets=test_matrix, early_stopping_rounds=early_stopping_rounds)pre= model.predict(X_valid,num_iteration=model.best_iteration)print('score : ', np.mean((pre[:,1]>0.5)==y_valid))xgb 模型import xgboostX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)clf = xgboosttrain_matrix = clf.DMatrix(X_train, label=y_train, missing=-1)test_matrix = clf.DMatrix(X_test, label=y_test, missing=-1)z = clf.DMatrix(X_valid, label=y_valid, missing=-1)params = {'booster': 'gbtree', 'objective': 'multi:softprob', 'eval_metric': 'mlogloss', 'gamma': 1, 'min_child_weight': 1.5, 'max_depth': 5, 'lambda': 100, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'eta': 0.03, 'tree_method': 'exact', 'seed': 2017, "num_class": 2 }num_round = 10000early_stopping_rounds = 100watchlist = [(train_matrix, 'train'), (test_matrix, 'eval') ]model = clf.train(params, train_matrix, num_boost_round=num_round, evals=watchlist, early_stopping_rounds=early_stopping_rounds )pre = model.predict(z,ntree_limit=model.best_ntree_limit)print('score : ', np.mean((pre[:,1]>0.3)==y_valid))自己封装模型Stacking,Bootstrap,Bagging技术实践""" 导入相关包"""import pandas as pdimport numpy as npimport lightgbm as lgbfrom sklearn.metrics import f1_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import StratifiedKFoldclass SBBTree(): """ SBBTree Stacking,Bootstap,Bagging """ def __init__( self, params, stacking_num, bagging_num, bagging_test_size, num_boost_round, early_stopping_rounds ): """ Initializes the SBBTree. Args: params : lgb params. stacking_num : k_flod stacking. bagging_num : bootstrap num. bagging_test_size : bootstrap sample rate. num_boost_round : boost num. early_stopping_rounds : early_stopping_rounds. """ self.params = params self.stacking_num = stacking_num self.bagging_num = bagging_num self.bagging_test_size = bagging_test_size self.num_boost_round = num_boost_round self.early_stopping_rounds = early_stopping_rounds self.model = lgb self.stacking_model = [] self.bagging_model = [] def fit(self, X, y): """ fit model. """ if self.stacking_num > 1: layer_train = np.zeros((X.shape[0], 2)) self.SK = StratifiedKFold(n_splits=self.stacking_num, shuffle=True, random_state=1) for k,(train_index, test_index) in enumerate(self.SK.split(X, y)): X_train = X[train_index] y_train = y[train_index] X_test = X[test_index] y_test = y[test_index] lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) gbm = lgb.train(self.params, lgb_train, num_boost_round=self.num_boost_round, valid_sets=lgb_eval, early_stopping_rounds=self.early_stopping_rounds) self.stacking_model.append(gbm) pred_y = gbm.predict(X_test, num_iteration=gbm.best_iteration) layer_train[test_index, 1] = pred_y X = np.hstack((X, layer_train[:,1].reshape((-1,1)))) else: pass for bn in range(self.bagging_num): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.bagging_test_size, random_state=bn) lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) gbm = lgb.train(self.params, lgb_train, num_boost_round=10000, valid_sets=lgb_eval, early_stopping_rounds=200) self.bagging_model.append(gbm) def predict(self, X_pred): """ predict test data. """ if self.stacking_num > 1: test_pred = np.zeros((X_pred.shape[0], self.stacking_num)) for sn,gbm in enumerate(self.stacking_model): pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration) test_pred[:, sn] = pred X_pred = np.hstack((X_pred, test_pred.mean(axis=1).reshape((-1,1)))) else: pass for bn,gbm in enumerate(self.bagging_model): pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration) if bn == 0: pred_out=pred else: pred_out+=pred return pred_out/self.bagging_num测试自己封装的模型类""" TEST CODE"""from sklearn.datasets import make_classificationfrom sklearn.datasets import load_breast_cancerfrom sklearn.datasets import make_gaussian_quantilesfrom sklearn import metricsfrom sklearn.metrics import f1_score# X, y = make_classification(n_samples=1000, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=1)X, y = make_gaussian_quantiles(mean=None, cov=1.0, n_samples=1000, n_features=50, n_classes=2, shuffle=True, random_state=2)# data = load_breast_cancer()# X, y = data.data, data.targetX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 9, 'learning_rate': 0.03, 'feature_fraction_seed': 2, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_data': 20, 'min_hessian': 1, 'verbose': -1, 'silent': 0 }# test 1model = SBBTree(params=params, stacking_num=2, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X,y)X_pred = X[0].reshape((1,-1))pred=model.predict(X_pred)print('pred')print(pred)print('TEST 1 ok')# test 1model = SBBTree(params, stacking_num=1, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred1=model.predict(X_test)# test 2 model = SBBTree(params, stacking_num=1, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred2=model.predict(X_test)# test 3 model = SBBTree(params, stacking_num=5, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred3=model.predict(X_test)# test 4 model = SBBTree(params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred4=model.predict(X_test)fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred1, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred2, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred3, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred4, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))# auc: 0.7281621243885396# auc: 0.7710471146419509# auc: 0.7894369046305492# auc: 0.8084519474787597天猫复购场景实战读取特征数据import pandas as pdimport numpy as npimport lightgbm as lgbfrom sklearn.metrics import f1_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import StratifiedKFoldtrain_data = pd.read_csv('train_all.csv',nrows=10000)test_data = pd.read_csv('test_all.csv',nrows=100)features_columns = [col for col in train_data.columns if col not in ['user_id','label']]train = train_data[features_columns].valuestest = test_data[features_columns].valuestarget =train_data['label'].values设置模型参数params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 9, 'learning_rate': 0.03, 'feature_fraction_seed': 2, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_data': 20, 'min_hessian': 1, 'verbose': -1, 'silent': 0 }model = SBBTree(params=params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)模型训练model.fit(train, target)预测结果pred = model.predict(test)df_out = pd.DataFrame()df_out['user_id'] = test_data['user_id'].astype(int)df_out['predict_prob'] = preddf_out.head()保存结果""" 保留数据头,不保存index"""df_out.to_csv('df_out.csv',header=True,index=False)print('save OK!')

以上内容和代码全部来自于《阿里云天池大赛赛题解析(机器学习篇)》这本好书,十分推荐大家去阅读原书!

本文链接地址:https://www.jiuchutong.com/zhishi/287129.html 转载请保留说明!

上一篇:CVPR2023最新论文 (含语义分割、扩散模型、多模态、预训练、MAE等方向)(cvpr2017最佳论文)

下一篇:vue3中数据更新了,但是视图没有更新的5中方案(vue数据更新会触发什么生命周期)

  • 追忆,童年一(追忆童年一)

    追忆,童年一(追忆童年一)

  • python excel写入数据

    python excel写入数据

  • 淘宝评价多久清空一次(淘宝评价多久会清零)

    淘宝评价多久清空一次(淘宝评价多久会清零)

  • 华为p30pro网速慢怎么解决(华为p30pro网速慢怎样解决)

    华为p30pro网速慢怎么解决(华为p30pro网速慢怎样解决)

  • 白板屏幕颠倒怎么回正(白板的屏幕歪了怎么矫正)

    白板屏幕颠倒怎么回正(白板的屏幕歪了怎么矫正)

  • 经常开热点会损坏手机吗(经常开热点会损耗流量吗)

    经常开热点会损坏手机吗(经常开热点会损耗流量吗)

  • 淘宝下单后商品下架了还会发货吗(淘宝下单后商品不存在是什么意思)

    淘宝下单后商品下架了还会发货吗(淘宝下单后商品不存在是什么意思)

  • 为什么腾讯游戏人脸识别要搞很多次(为什么腾讯游戏这么火)

    为什么腾讯游戏人脸识别要搞很多次(为什么腾讯游戏这么火)

  • 自己的qq群无故消失(自己的qq群无故退出)

    自己的qq群无故消失(自己的qq群无故退出)

  • 抖音视频和抖音极速版有什么不同(抖音视频和抖音短视频一样吗)

    抖音视频和抖音极速版有什么不同(抖音视频和抖音短视频一样吗)

  • 加入黑名单对方还能加好友吗(加入黑名单对方发消息显示什么)

    加入黑名单对方还能加好友吗(加入黑名单对方发消息显示什么)

  • dltao是什么手机(dido os是什么手机)

    dltao是什么手机(dido os是什么手机)

  • 淘宝怎么隐藏会员名(淘宝怎么隐藏会员名称)

    淘宝怎么隐藏会员名(淘宝怎么隐藏会员名称)

  • qq第一次封号多长时间(qq一般封多久)

    qq第一次封号多长时间(qq一般封多久)

  • 文字型数据和数字型数据最大的区别是什么(文字型数据和数据的区别)

    文字型数据和数字型数据最大的区别是什么(文字型数据和数据的区别)

  • 违反微信用户行为规范怎么办(违反微信用户行为规范)

    违反微信用户行为规范怎么办(违反微信用户行为规范)

  • 光盘是多媒体信息吗(光盘是多媒体输入设备吗)

    光盘是多媒体信息吗(光盘是多媒体输入设备吗)

  • 手机的hd图标怎么取消(手机的hd图标怎么删除)

    手机的hd图标怎么取消(手机的hd图标怎么删除)

  • ps中动图怎么储存(ps如何储存动图)

    ps中动图怎么储存(ps如何储存动图)

  • 手机充不满电是什么原因(手机充不满电是什么原因造成的?)

    手机充不满电是什么原因(手机充不满电是什么原因造成的?)

  • PS怎么转CDR(ps怎么转cdr格式)

    PS怎么转CDR(ps怎么转cdr格式)

  • vivoy93有图案解锁吗(vivoy93手机的图案锁在哪里设置)

    vivoy93有图案解锁吗(vivoy93手机的图案锁在哪里设置)

  • icloud登陆一直转圈(icloud登陆不上一直转)

    icloud登陆一直转圈(icloud登陆不上一直转)

  • vivo如何导出手机通讯录(vivo手机怎样导出手机号码)

    vivo如何导出手机通讯录(vivo手机怎样导出手机号码)

  • 黑鲨2有手柄吗(黑鲨2游戏手柄好用吗)

    黑鲨2有手柄吗(黑鲨2游戏手柄好用吗)

  • 苹果导入的铃声怎么删除(苹果怎么制作铃声)

    苹果导入的铃声怎么删除(苹果怎么制作铃声)

  • 8p充电到80就不动了(8p充电80就不动啦)

    8p充电到80就不动了(8p充电80就不动啦)

  • 看别人快手主页别人知道吗(看别人快手主页别人能看到吗)

    看别人快手主页别人知道吗(看别人快手主页别人能看到吗)

  • PHPCMS 登录界面能自己换吗?(phpcms使用教程)

    PHPCMS 登录界面能自己换吗?(phpcms使用教程)

  • 初级职称经济法目录
  • 印花税和契税是什么意思?什么时候交?
  • 企业外币账户开户流程
  • 信用减值损失是什么类科目
  • 小规模纳税人哪些发票可以抵税
  • 土地使用权增资方案
  • 股东向公司借款需要股东会决议吗
  • 企业销售现金折扣
  • 股东转让股权印花税怎么交税
  • 地税人工费税率计算是怎样的?
  • 开专票还需要提供营业执照?
  • 护栏发票税点
  • 简易计税方法是什么意思
  • 堤围费是什么意思
  • 如何查询企业开票记录
  • 物业公司怎么开展业务
  • 给员工发的慰问短信
  • 经营活动现金流量净额
  • 多交税款退税怎么做账
  • 收取施工队管理费
  • 2020年运费发票备注栏新规定
  • 收到退回残疾金分录
  • 汇算清缴相关分录有哪些
  • fontcreator字间距
  • 借支单如何做账科目
  • 结转工程成本属于什么会计科目
  • 隐藏资源管理器窗口
  • 股东已转让股权还可以追究出资吗
  • 息税前利润和税前净利润的关系
  • hpdskflt.sys
  • 前端打印语句
  • 一次还本分次付息的国债会计分录
  • linux 运行php
  • 损益类科目调整影响所得税吗为什么
  • 前端高手进阶
  • chat gpt 国内版免费手机
  • 我已经用尽了洪荒之力漫画表情
  • kaldi官网
  • php字符串定义
  • 酒店押金的账务处理
  • 报税系统清卡成功状态
  • 纳税申报期和税款所属期的区别
  • 报废产品需要入库吗
  • 销售货物免税
  • 如何在控制台打印debug里的数据
  • SQL Server 2005 Management Studio Express企业管理器将英文变成简体中文版的实现方法
  • 开发公司出租未开发发票
  • 公司购买办公楼需要缴纳城镇土地使用税吗
  • 权益法和成本法的适用范围
  • 企业所得税季度预缴纳税申报表
  • 苗圃的账务处理
  • 预收账款是负债增加还是减少
  • 工程物资主要包括建筑材料
  • 土地租赁费如何摊销
  • 汇算清缴退税分录
  • 购销供应商
  • 应付账款周转率计算公式
  • 实收资本后面带人名吗
  • 先出报表还是先报表
  • centos7查看目录
  • windows崩溃后怎么修复
  • win10家庭版免费升级专业版密钥
  • 怎么隐藏不让别人发现
  • win7系统迁移到另一磁盘
  • win10出现恢复界面0xc000000f
  • 基于stm32的100个毕业设计
  • android应用程序开发的流程
  • perl 字符串处理
  • cocos2dx schedule
  • python面向对象特征
  • Underscore.js 1.3.3 中文注释翻译说明
  • javascript中的函数该如何理解
  • jqueryfilter
  • 税务系统会议费管理办法
  • 各种建筑材料税率表
  • 残疾人交房产契税有优惠吗
  • 广西电子税务局登陆入口
  • 消费税组成计税价格为什么要除以1-消费税率
  • 棚户区改造的房子和商品房有什么区别
  • 扣缴个人所得税客户端操作流程
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设