位置: IT常识 - 正文

阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf)

编辑:rootadmin
阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码) 目录赛题背景全代码导入包读取数据(训练数据前10000行,测试数据前100条)读取全部数据获取训练和测试数据切分40%数据用于线下验证交叉验证:评估估算器性能F1验证ShuffleSplit切分数据模型调参模糊矩阵不同的分类模型LR 模型KNN 模型tree树模型bagging模型随机森林模型ExTree模型AdaBoost模型GBDT模型VOTE模型投票lgb 模型xgb 模型自己封装模型Stacking,Bootstrap,Bagging技术实践测试自己封装的模型类天猫复购场景实战读取特征数据设置模型参数模型训练预测结果保存结果赛题背景

推荐整理分享阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:阿里云天池大赛赛题解析百度云,阿里云天池大赛pdf,阿里云天池大赛奖金,阿里云天池大赛官网,阿里云天池大赛pdf,阿里云天池大赛含金量,阿里云天池大赛赛题解析电子版,阿里云天池大赛含金量,内容如对您有帮助,希望把文章链接给更多的朋友!

商家一般会在 “双十一”,“双十二” 等节日进行大规模的促销,比如各种折扣券和现金券。然而,被低价、折扣、各种让利吸引的用户往往在这次消费之后就再也没有购买,主要为了“薅羊毛”,针对这些用户的促销并没有带来未来销量的提高,只是增加了相应的营销成本。因此店铺有迫切的需求,想知道哪些用户可能会成为重复购买其店铺商品的忠诚用户,以便对这些有潜力的用户进行精准营销,以降低促销成本,提高投资回报率。 这个赛题的目标就是给一堆数据(用户、店铺的历史行为),然后用训练好的模型预测新用户是否会在6个月内再次从同一店铺购买商品。所以这是一个典型的二分类问题。 常见的分类算法:朴素贝叶斯,决策树,支持向量机,KNN,逻辑回归等等; 集成学习:随机森林,GBDT(梯度提升决策树),Adaboot,XGBoost,LightGBM,CatBoost等等; 神经网络:MLP(多层神经网络),DL(深度学习)等。 本赛题的数据量不大,一把用不到深度学习,根据赛题特点,集成算法,尤其是XGBoost,LightGBM,CatBoost等算法效果会比较好。

阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf)

全代码

一个典型的机器学习实战算法基本包括 1) 数据处理,2) 特征选取、优化,和 3) 模型选取、验证、优化。 因为 “数据和特征决定了机器学习的上限,而模型和算法知识逼近这个上限而已。” 所以在解决一个机器学习问题时大部分时间都会花在数据处理和特征优化上。 大家最好在jupyter notebook上一段一段地跑下面的代码,加深理解。 机器学习的基本知识可以康康我的其他文章哦 好康的。

导入包import pandas as pdimport numpy as npimport warningswarnings.filterwarnings("ignore") 读取数据(训练数据前10000行,测试数据前100条)train_data = pd.read_csv('train_all.csv',nrows=10000)test_data = pd.read_csv('test_all.csv',nrows=100)train_data.head()test_data.head()

读取全部数据train_data.columns获取训练和测试数据features_columns = [col for col in train_data.columns if col not in ['user_id','label']]train = train_data[features_columns].valuestest = test_data[features_columns].valuestarget =train_data['label'].values切分40%数据用于线下验证from sklearn.model_selection import train_test_splitfrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)print(X_train.shape, y_train.shape)print(X_test.shape, y_test.shape)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test) 交叉验证:评估估算器性能from sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)scores = cross_val_score(clf, train, target, cv=5)print(scores)print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) F1验证from sklearn import metricsfrom sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)scores = cross_val_score(clf, train, target, cv=5, scoring='f1_macro')print(scores) print("F1: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))ShuffleSplit切分数据from sklearn.model_selection import ShuffleSplitfrom sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)cv = ShuffleSplit(n_splits=5, test_size=0.3, random_state=0)cross_val_score(clf, train, target, cv=cv) 模型调参from sklearn.model_selection import train_test_splitfrom sklearn.model_selection import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.ensemble import RandomForestClassifier# Split the dataset in two equal partsX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.5, random_state=0)# model clf = RandomForestClassifier(n_jobs=-1)# Set the parameters by cross-validationtuned_parameters = { 'n_estimators': [50, 100, 200]# ,'criterion': ['gini', 'entropy']# ,'max_depth': [2, 5]# ,'max_features': ['log2', 'sqrt', 'int']# ,'bootstrap': [True, False]# ,'warm_start': [True, False] }scores = ['precision']for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(clf, tuned_parameters, cv=5, scoring='%s_macro' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print()模糊矩阵import itertoolsimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import confusion_matrixfrom sklearn.ensemble import RandomForestClassifier# label nameclass_names = ['no-repeat', 'repeat']# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)# Run classifier, using a model that is too regularized (C too low) to see# the impact on the resultsclf = RandomForestClassifier(n_jobs=-1)y_pred = clf.fit(X_train, y_train).predict(X_test)def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.tight_layout()# Compute confusion matrixcnf_matrix = confusion_matrix(y_test, y_pred)np.set_printoptions(precision=2)# Plot non-normalized confusion matrixplt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization')# Plot normalized confusion matrixplt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix')plt.show()

from sklearn.metrics import classification_reportfrom sklearn.ensemble import RandomForestClassifier# label nameclass_names = ['no-repeat', 'repeat']# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)# Run classifier, using a model that is too regularized (C too low) to see# the impact on the resultsclf = RandomForestClassifier(n_jobs=-1)y_pred = clf.fit(X_train, y_train).predict(X_test)print(classification_report(y_test, y_pred, target_names=class_names))

不同的分类模型LR 模型from sklearn.linear_model import LinearRegressionfrom sklearn.linear_model import LogisticRegressionfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X_train, y_train)clf.score(X_test, y_test)KNN 模型from sklearn.neighbors import KNeighborsClassifierfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)clf = KNeighborsClassifier(n_neighbors=3).fit(X_train, y_train)clf.score(X_test, y_test)tree树模型from sklearn import tree# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = tree.DecisionTreeClassifier()clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)bagging模型from sklearn.ensemble import BaggingClassifierfrom sklearn.neighbors import KNeighborsClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)随机森林模型from sklearn.ensemble import RandomForestClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = clf = RandomForestClassifier(n_estimators=10, max_depth=3, min_samples_split=12, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)ExTree模型from sklearn.ensemble import ExtraTreesClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = ExtraTreesClassifier(n_estimators=10, max_depth=None, min_samples_split=2, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)clf.n_features_clf.feature_importances_[:10]AdaBoost模型from sklearn.ensemble import AdaBoostClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = AdaBoostClassifier(n_estimators=10)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)GBDT模型from sklearn.ensemble import GradientBoostingClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, max_depth=1, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)VOTE模型投票from sklearn import datasetsfrom sklearn.model_selection import cross_val_scorefrom sklearn.linear_model import LogisticRegressionfrom sklearn.naive_bayes import GaussianNBfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.ensemble import VotingClassifierfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)y = targetclf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=1)clf2 = RandomForestClassifier(n_estimators=50, random_state=1)clf3 = GaussianNB()eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']): scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy') print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))lgb 模型import lightgbmX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)clf = lightgbmtrain_matrix = clf.Dataset(X_train, label=y_train)test_matrix = clf.Dataset(X_test, label=y_test)params = { 'boosting_type': 'gbdt', #'boosting_type': 'dart', 'objective': 'multiclass', 'metric': 'multi_logloss', 'min_child_weight': 1.5, 'num_leaves': 2**5, 'lambda_l2': 10, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'learning_rate': 0.03, 'tree_method': 'exact', 'seed': 2017, "num_class": 2, 'silent': True, }num_round = 10000early_stopping_rounds = 100model = clf.train(params, train_matrix, num_round, valid_sets=test_matrix, early_stopping_rounds=early_stopping_rounds)pre= model.predict(X_valid,num_iteration=model.best_iteration)print('score : ', np.mean((pre[:,1]>0.5)==y_valid))xgb 模型import xgboostX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)clf = xgboosttrain_matrix = clf.DMatrix(X_train, label=y_train, missing=-1)test_matrix = clf.DMatrix(X_test, label=y_test, missing=-1)z = clf.DMatrix(X_valid, label=y_valid, missing=-1)params = {'booster': 'gbtree', 'objective': 'multi:softprob', 'eval_metric': 'mlogloss', 'gamma': 1, 'min_child_weight': 1.5, 'max_depth': 5, 'lambda': 100, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'eta': 0.03, 'tree_method': 'exact', 'seed': 2017, "num_class": 2 }num_round = 10000early_stopping_rounds = 100watchlist = [(train_matrix, 'train'), (test_matrix, 'eval') ]model = clf.train(params, train_matrix, num_boost_round=num_round, evals=watchlist, early_stopping_rounds=early_stopping_rounds )pre = model.predict(z,ntree_limit=model.best_ntree_limit)print('score : ', np.mean((pre[:,1]>0.3)==y_valid))自己封装模型Stacking,Bootstrap,Bagging技术实践""" 导入相关包"""import pandas as pdimport numpy as npimport lightgbm as lgbfrom sklearn.metrics import f1_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import StratifiedKFoldclass SBBTree(): """ SBBTree Stacking,Bootstap,Bagging """ def __init__( self, params, stacking_num, bagging_num, bagging_test_size, num_boost_round, early_stopping_rounds ): """ Initializes the SBBTree. Args: params : lgb params. stacking_num : k_flod stacking. bagging_num : bootstrap num. bagging_test_size : bootstrap sample rate. num_boost_round : boost num. early_stopping_rounds : early_stopping_rounds. """ self.params = params self.stacking_num = stacking_num self.bagging_num = bagging_num self.bagging_test_size = bagging_test_size self.num_boost_round = num_boost_round self.early_stopping_rounds = early_stopping_rounds self.model = lgb self.stacking_model = [] self.bagging_model = [] def fit(self, X, y): """ fit model. """ if self.stacking_num > 1: layer_train = np.zeros((X.shape[0], 2)) self.SK = StratifiedKFold(n_splits=self.stacking_num, shuffle=True, random_state=1) for k,(train_index, test_index) in enumerate(self.SK.split(X, y)): X_train = X[train_index] y_train = y[train_index] X_test = X[test_index] y_test = y[test_index] lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) gbm = lgb.train(self.params, lgb_train, num_boost_round=self.num_boost_round, valid_sets=lgb_eval, early_stopping_rounds=self.early_stopping_rounds) self.stacking_model.append(gbm) pred_y = gbm.predict(X_test, num_iteration=gbm.best_iteration) layer_train[test_index, 1] = pred_y X = np.hstack((X, layer_train[:,1].reshape((-1,1)))) else: pass for bn in range(self.bagging_num): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.bagging_test_size, random_state=bn) lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) gbm = lgb.train(self.params, lgb_train, num_boost_round=10000, valid_sets=lgb_eval, early_stopping_rounds=200) self.bagging_model.append(gbm) def predict(self, X_pred): """ predict test data. """ if self.stacking_num > 1: test_pred = np.zeros((X_pred.shape[0], self.stacking_num)) for sn,gbm in enumerate(self.stacking_model): pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration) test_pred[:, sn] = pred X_pred = np.hstack((X_pred, test_pred.mean(axis=1).reshape((-1,1)))) else: pass for bn,gbm in enumerate(self.bagging_model): pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration) if bn == 0: pred_out=pred else: pred_out+=pred return pred_out/self.bagging_num测试自己封装的模型类""" TEST CODE"""from sklearn.datasets import make_classificationfrom sklearn.datasets import load_breast_cancerfrom sklearn.datasets import make_gaussian_quantilesfrom sklearn import metricsfrom sklearn.metrics import f1_score# X, y = make_classification(n_samples=1000, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=1)X, y = make_gaussian_quantiles(mean=None, cov=1.0, n_samples=1000, n_features=50, n_classes=2, shuffle=True, random_state=2)# data = load_breast_cancer()# X, y = data.data, data.targetX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 9, 'learning_rate': 0.03, 'feature_fraction_seed': 2, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_data': 20, 'min_hessian': 1, 'verbose': -1, 'silent': 0 }# test 1model = SBBTree(params=params, stacking_num=2, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X,y)X_pred = X[0].reshape((1,-1))pred=model.predict(X_pred)print('pred')print(pred)print('TEST 1 ok')# test 1model = SBBTree(params, stacking_num=1, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred1=model.predict(X_test)# test 2 model = SBBTree(params, stacking_num=1, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred2=model.predict(X_test)# test 3 model = SBBTree(params, stacking_num=5, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred3=model.predict(X_test)# test 4 model = SBBTree(params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred4=model.predict(X_test)fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred1, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred2, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred3, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred4, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))# auc: 0.7281621243885396# auc: 0.7710471146419509# auc: 0.7894369046305492# auc: 0.8084519474787597天猫复购场景实战读取特征数据import pandas as pdimport numpy as npimport lightgbm as lgbfrom sklearn.metrics import f1_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import StratifiedKFoldtrain_data = pd.read_csv('train_all.csv',nrows=10000)test_data = pd.read_csv('test_all.csv',nrows=100)features_columns = [col for col in train_data.columns if col not in ['user_id','label']]train = train_data[features_columns].valuestest = test_data[features_columns].valuestarget =train_data['label'].values设置模型参数params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 9, 'learning_rate': 0.03, 'feature_fraction_seed': 2, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_data': 20, 'min_hessian': 1, 'verbose': -1, 'silent': 0 }model = SBBTree(params=params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)模型训练model.fit(train, target)预测结果pred = model.predict(test)df_out = pd.DataFrame()df_out['user_id'] = test_data['user_id'].astype(int)df_out['predict_prob'] = preddf_out.head()保存结果""" 保留数据头,不保存index"""df_out.to_csv('df_out.csv',header=True,index=False)print('save OK!')

以上内容和代码全部来自于《阿里云天池大赛赛题解析(机器学习篇)》这本好书,十分推荐大家去阅读原书!

本文链接地址:https://www.jiuchutong.com/zhishi/287129.html 转载请保留说明!

上一篇:CVPR2023最新论文 (含语义分割、扩散模型、多模态、预训练、MAE等方向)(cvpr2017最佳论文)

下一篇:vue3中数据更新了,但是视图没有更新的5中方案(vue数据更新会触发什么生命周期)

  • 支付宝拉黑还能收到对方的转账吗(支付宝拉黑还能转账给对方吗)

    支付宝拉黑还能收到对方的转账吗(支付宝拉黑还能转账给对方吗)

  • 苹果用高通基带的机型(苹果用高通基带怎么样)

    苹果用高通基带的机型(苹果用高通基带怎么样)

  • 华为网易云音乐锁屏不显示怎么办(华为网易云音乐播放栏不见)

    华为网易云音乐锁屏不显示怎么办(华为网易云音乐播放栏不见)

  • 大鱼号是哪个平台(大鱼号属于什么平台)

    大鱼号是哪个平台(大鱼号属于什么平台)

  • 华为p40悬浮球怎么关闭(华为p40悬浮球怎么打开)

    华为p40悬浮球怎么关闭(华为p40悬浮球怎么打开)

  • 电脑长时间睡眠对电脑有伤害吗(电脑长时间睡眠唤醒不了屏幕)

    电脑长时间睡眠对电脑有伤害吗(电脑长时间睡眠唤醒不了屏幕)

  • 苹果x高多少厘米(苹果x多高多宽)

    苹果x高多少厘米(苹果x多高多宽)

  • 红包已领取但是没到账(红包已领取但是没收到)

    红包已领取但是没到账(红包已领取但是没收到)

  • 苹果一晚上掉电多少算正常(苹果一晚上掉电多少正常)

    苹果一晚上掉电多少算正常(苹果一晚上掉电多少正常)

  • 为什么微信只能发15秒视频(为什么微信只能收到近三天的消息)

    为什么微信只能发15秒视频(为什么微信只能收到近三天的消息)

  • iphonese像素多少万(苹果se的摄像头像素)

    iphonese像素多少万(苹果se的摄像头像素)

  • 华为屏下指纹有那几款(华为屏幕下方出现指纹)

    华为屏下指纹有那几款(华为屏幕下方出现指纹)

  • 手机有声音但是黑屏怎么办(手机有声音但是黑屏是内屏坏了吗)

    手机有声音但是黑屏怎么办(手机有声音但是黑屏是内屏坏了吗)

  • 登录qq时需要密保手机验证码怎么办(登录qq必须要密保手机号码吗)

    登录qq时需要密保手机验证码怎么办(登录qq必须要密保手机号码吗)

  • 京东自营在哪里找(京东自营在哪里开发票)

    京东自营在哪里找(京东自营在哪里开发票)

  • 计算机病毒是程序吗(计算机病毒是程序病毒吗)

    计算机病毒是程序吗(计算机病毒是程序病毒吗)

  • 电脑腾讯视频怎么下载到u盘(电脑腾讯视频怎么用手机号登录)

    电脑腾讯视频怎么下载到u盘(电脑腾讯视频怎么用手机号登录)

  • 手机快传怎么用(手机快传功能在哪)

    手机快传怎么用(手机快传功能在哪)

  • 华为mate30和华为p30pro有什么区别(华为mate30和华为mate305g的区别)

    华为mate30和华为p30pro有什么区别(华为mate30和华为mate305g的区别)

  • 支付宝实名认证怎么取消(支付宝实名认证可以更改吗)

    支付宝实名认证怎么取消(支付宝实名认证可以更改吗)

  • 如何下载酷狗歌词(如何下载酷狗歌到mp3 下载歌到mp3的方法)

    如何下载酷狗歌词(如何下载酷狗歌到mp3 下载歌到mp3的方法)

  • 苹果商店怎么没有小红书(苹果商店怎么没有滴滴出行了)

    苹果商店怎么没有小红书(苹果商店怎么没有滴滴出行了)

  • 海信聚好看怎么看央视(海信聚好看怎么什么都看不了)

    海信聚好看怎么看央视(海信聚好看怎么什么都看不了)

  • 淘宝质量投诉在哪(淘宝质量投诉电话是多少)

    淘宝质量投诉在哪(淘宝质量投诉电话是多少)

  • 4g在线和wifi在线区别(qq怎么设置4g在线和wifi在线)

    4g在线和wifi在线区别(qq怎么设置4g在线和wifi在线)

  • 抖音小黄车是怎么加上去的(抖音小黄车是怎么申请的)

    抖音小黄车是怎么加上去的(抖音小黄车是怎么申请的)

  • ipv6有啥用(ipv6是干啥的)

    ipv6有啥用(ipv6是干啥的)

  • 怎么建微信群当群主(怎么样建微信群当群主)

    怎么建微信群当群主(怎么样建微信群当群主)

  • html利用a标签实现下载本地的文件(html中a标签怎么引用图片)

    html利用a标签实现下载本地的文件(html中a标签怎么引用图片)

  • 建筑企业如何纳税
  • 没有申报个税的工资怎么入账
  • 属于原始凭证的有哪些
  • 民办学校房屋要求
  • 对公账户卡号是私人账号
  • 所得税筹划的意义
  • 税务未抄报
  • 小规模纳税人企业所得税怎么申报
  • 收取车辆使用费怎么做账
  • 房企所得税纳税义务发生时间
  • 财产转让应纳税额如果是负数怎么办
  • 企业预付一年的房租怎么做分录
  • 银行收取代发工资合法吗
  • 预付款对应的会计科目
  • 企业所得税连续3年亏损预警自查报告
  • 固定资产怎么盘点
  • 营业收入包括其收入吗
  • 车辆购置税入什么科目?
  • 物业公司小规模纳税人如何报税
  • 有限合伙企业需要承担无限连带责任吗
  • 变更公司财务人员,需要本人去吗
  • 进项和销项的会计分录
  • 已知不含税金额和增值税如何计算税率
  • 企业重组特殊性处理通俗理解
  • win11开机黑屏进不去桌面
  • Excel规划求解怎么做
  • 设备维修费增值税
  • 正确的PHP匹配UTF-8中文的正则表达式
  • 未实缴出资的股权转让后还要承担法律后果吗
  • 在缴纳企业所得税的情形
  • 销售使用过的固定资产3%减按2%
  • php下载远程文件到服务器
  • 马卡雷纳大教堂
  • 语义特征的语法学概念
  • 数据库如何迁移数据库表
  • audit result
  • php网站用什么软件修改
  • 企业所得税季报是填累计数吗
  • 企业所得税汇算清缴操作流程
  • 识别假人民币的简便方法
  • 税金及附加可以结转吗
  • 个人独资企业需要会计做账吗
  • 公司减免的社保退给个人吗
  • 资源税的征税对象都是原矿和选矿
  • 如何区分生产类型
  • 会计凭证销毁年限
  • 购入固定资产怎么抵扣企业所得税
  • 应付账款怎么处理
  • 暂估成本的账务怎么处理
  • 未取得发票能计入在建工程吗
  • 发现以前年度增值税附表2填写错了那时增值税是0
  • 税盘不缴费会怎么样
  • 什么是四大行业
  • 贷款利息天数怎么算的
  • 应付账款是已经付了还是没付
  • 没有什么费用
  • 会计内帐外帐的区别在哪
  • windows7开机黑屏安全模式也进不去
  • 如何进行节约
  • ibm笔记本开机进不去系统
  • macbook 如何设置safari的搜索引擎
  • win10系统关机后又自动启动怎么办
  • ie6浏览器兼容模式怎么设置在哪里
  • 通过手机号怎么查对方的位置
  • css实现下拉菜单的思路是
  • 给自己的网站制作软件
  • perl ne
  • web标准有哪些方面
  • unity3d物体碰撞
  • js发送ajax请求
  • python os.access
  • jquery form序列化
  • shell脚本创建多级目录
  • 深入理解计算机系统
  • unity导出资源包
  • python中ans
  • 鉴证服务是指什么
  • 2020税控盘升级后怎么使用
  • 税务函调回来几天可以退税
  • 大管家多少集
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设