位置: IT常识 - 正文

阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf)

编辑:rootadmin
阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码) 目录赛题背景全代码导入包读取数据(训练数据前10000行,测试数据前100条)读取全部数据获取训练和测试数据切分40%数据用于线下验证交叉验证:评估估算器性能F1验证ShuffleSplit切分数据模型调参模糊矩阵不同的分类模型LR 模型KNN 模型tree树模型bagging模型随机森林模型ExTree模型AdaBoost模型GBDT模型VOTE模型投票lgb 模型xgb 模型自己封装模型Stacking,Bootstrap,Bagging技术实践测试自己封装的模型类天猫复购场景实战读取特征数据设置模型参数模型训练预测结果保存结果赛题背景

推荐整理分享阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:阿里云天池大赛赛题解析百度云,阿里云天池大赛pdf,阿里云天池大赛奖金,阿里云天池大赛官网,阿里云天池大赛pdf,阿里云天池大赛含金量,阿里云天池大赛赛题解析电子版,阿里云天池大赛含金量,内容如对您有帮助,希望把文章链接给更多的朋友!

商家一般会在 “双十一”,“双十二” 等节日进行大规模的促销,比如各种折扣券和现金券。然而,被低价、折扣、各种让利吸引的用户往往在这次消费之后就再也没有购买,主要为了“薅羊毛”,针对这些用户的促销并没有带来未来销量的提高,只是增加了相应的营销成本。因此店铺有迫切的需求,想知道哪些用户可能会成为重复购买其店铺商品的忠诚用户,以便对这些有潜力的用户进行精准营销,以降低促销成本,提高投资回报率。 这个赛题的目标就是给一堆数据(用户、店铺的历史行为),然后用训练好的模型预测新用户是否会在6个月内再次从同一店铺购买商品。所以这是一个典型的二分类问题。 常见的分类算法:朴素贝叶斯,决策树,支持向量机,KNN,逻辑回归等等; 集成学习:随机森林,GBDT(梯度提升决策树),Adaboot,XGBoost,LightGBM,CatBoost等等; 神经网络:MLP(多层神经网络),DL(深度学习)等。 本赛题的数据量不大,一把用不到深度学习,根据赛题特点,集成算法,尤其是XGBoost,LightGBM,CatBoost等算法效果会比较好。

阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf)

全代码

一个典型的机器学习实战算法基本包括 1) 数据处理,2) 特征选取、优化,和 3) 模型选取、验证、优化。 因为 “数据和特征决定了机器学习的上限,而模型和算法知识逼近这个上限而已。” 所以在解决一个机器学习问题时大部分时间都会花在数据处理和特征优化上。 大家最好在jupyter notebook上一段一段地跑下面的代码,加深理解。 机器学习的基本知识可以康康我的其他文章哦 好康的。

导入包import pandas as pdimport numpy as npimport warningswarnings.filterwarnings("ignore") 读取数据(训练数据前10000行,测试数据前100条)train_data = pd.read_csv('train_all.csv',nrows=10000)test_data = pd.read_csv('test_all.csv',nrows=100)train_data.head()test_data.head()

读取全部数据train_data.columns获取训练和测试数据features_columns = [col for col in train_data.columns if col not in ['user_id','label']]train = train_data[features_columns].valuestest = test_data[features_columns].valuestarget =train_data['label'].values切分40%数据用于线下验证from sklearn.model_selection import train_test_splitfrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)print(X_train.shape, y_train.shape)print(X_test.shape, y_test.shape)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test) 交叉验证:评估估算器性能from sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)scores = cross_val_score(clf, train, target, cv=5)print(scores)print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) F1验证from sklearn import metricsfrom sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)scores = cross_val_score(clf, train, target, cv=5, scoring='f1_macro')print(scores) print("F1: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))ShuffleSplit切分数据from sklearn.model_selection import ShuffleSplitfrom sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)cv = ShuffleSplit(n_splits=5, test_size=0.3, random_state=0)cross_val_score(clf, train, target, cv=cv) 模型调参from sklearn.model_selection import train_test_splitfrom sklearn.model_selection import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.ensemble import RandomForestClassifier# Split the dataset in two equal partsX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.5, random_state=0)# model clf = RandomForestClassifier(n_jobs=-1)# Set the parameters by cross-validationtuned_parameters = { 'n_estimators': [50, 100, 200]# ,'criterion': ['gini', 'entropy']# ,'max_depth': [2, 5]# ,'max_features': ['log2', 'sqrt', 'int']# ,'bootstrap': [True, False]# ,'warm_start': [True, False] }scores = ['precision']for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(clf, tuned_parameters, cv=5, scoring='%s_macro' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print()模糊矩阵import itertoolsimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import confusion_matrixfrom sklearn.ensemble import RandomForestClassifier# label nameclass_names = ['no-repeat', 'repeat']# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)# Run classifier, using a model that is too regularized (C too low) to see# the impact on the resultsclf = RandomForestClassifier(n_jobs=-1)y_pred = clf.fit(X_train, y_train).predict(X_test)def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.tight_layout()# Compute confusion matrixcnf_matrix = confusion_matrix(y_test, y_pred)np.set_printoptions(precision=2)# Plot non-normalized confusion matrixplt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization')# Plot normalized confusion matrixplt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix')plt.show()

from sklearn.metrics import classification_reportfrom sklearn.ensemble import RandomForestClassifier# label nameclass_names = ['no-repeat', 'repeat']# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)# Run classifier, using a model that is too regularized (C too low) to see# the impact on the resultsclf = RandomForestClassifier(n_jobs=-1)y_pred = clf.fit(X_train, y_train).predict(X_test)print(classification_report(y_test, y_pred, target_names=class_names))

不同的分类模型LR 模型from sklearn.linear_model import LinearRegressionfrom sklearn.linear_model import LogisticRegressionfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X_train, y_train)clf.score(X_test, y_test)KNN 模型from sklearn.neighbors import KNeighborsClassifierfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)clf = KNeighborsClassifier(n_neighbors=3).fit(X_train, y_train)clf.score(X_test, y_test)tree树模型from sklearn import tree# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = tree.DecisionTreeClassifier()clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)bagging模型from sklearn.ensemble import BaggingClassifierfrom sklearn.neighbors import KNeighborsClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)随机森林模型from sklearn.ensemble import RandomForestClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = clf = RandomForestClassifier(n_estimators=10, max_depth=3, min_samples_split=12, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)ExTree模型from sklearn.ensemble import ExtraTreesClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = ExtraTreesClassifier(n_estimators=10, max_depth=None, min_samples_split=2, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)clf.n_features_clf.feature_importances_[:10]AdaBoost模型from sklearn.ensemble import AdaBoostClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = AdaBoostClassifier(n_estimators=10)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)GBDT模型from sklearn.ensemble import GradientBoostingClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, max_depth=1, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)VOTE模型投票from sklearn import datasetsfrom sklearn.model_selection import cross_val_scorefrom sklearn.linear_model import LogisticRegressionfrom sklearn.naive_bayes import GaussianNBfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.ensemble import VotingClassifierfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)y = targetclf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=1)clf2 = RandomForestClassifier(n_estimators=50, random_state=1)clf3 = GaussianNB()eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']): scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy') print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))lgb 模型import lightgbmX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)clf = lightgbmtrain_matrix = clf.Dataset(X_train, label=y_train)test_matrix = clf.Dataset(X_test, label=y_test)params = { 'boosting_type': 'gbdt', #'boosting_type': 'dart', 'objective': 'multiclass', 'metric': 'multi_logloss', 'min_child_weight': 1.5, 'num_leaves': 2**5, 'lambda_l2': 10, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'learning_rate': 0.03, 'tree_method': 'exact', 'seed': 2017, "num_class": 2, 'silent': True, }num_round = 10000early_stopping_rounds = 100model = clf.train(params, train_matrix, num_round, valid_sets=test_matrix, early_stopping_rounds=early_stopping_rounds)pre= model.predict(X_valid,num_iteration=model.best_iteration)print('score : ', np.mean((pre[:,1]>0.5)==y_valid))xgb 模型import xgboostX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)clf = xgboosttrain_matrix = clf.DMatrix(X_train, label=y_train, missing=-1)test_matrix = clf.DMatrix(X_test, label=y_test, missing=-1)z = clf.DMatrix(X_valid, label=y_valid, missing=-1)params = {'booster': 'gbtree', 'objective': 'multi:softprob', 'eval_metric': 'mlogloss', 'gamma': 1, 'min_child_weight': 1.5, 'max_depth': 5, 'lambda': 100, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'eta': 0.03, 'tree_method': 'exact', 'seed': 2017, "num_class": 2 }num_round = 10000early_stopping_rounds = 100watchlist = [(train_matrix, 'train'), (test_matrix, 'eval') ]model = clf.train(params, train_matrix, num_boost_round=num_round, evals=watchlist, early_stopping_rounds=early_stopping_rounds )pre = model.predict(z,ntree_limit=model.best_ntree_limit)print('score : ', np.mean((pre[:,1]>0.3)==y_valid))自己封装模型Stacking,Bootstrap,Bagging技术实践""" 导入相关包"""import pandas as pdimport numpy as npimport lightgbm as lgbfrom sklearn.metrics import f1_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import StratifiedKFoldclass SBBTree(): """ SBBTree Stacking,Bootstap,Bagging """ def __init__( self, params, stacking_num, bagging_num, bagging_test_size, num_boost_round, early_stopping_rounds ): """ Initializes the SBBTree. Args: params : lgb params. stacking_num : k_flod stacking. bagging_num : bootstrap num. bagging_test_size : bootstrap sample rate. num_boost_round : boost num. early_stopping_rounds : early_stopping_rounds. """ self.params = params self.stacking_num = stacking_num self.bagging_num = bagging_num self.bagging_test_size = bagging_test_size self.num_boost_round = num_boost_round self.early_stopping_rounds = early_stopping_rounds self.model = lgb self.stacking_model = [] self.bagging_model = [] def fit(self, X, y): """ fit model. """ if self.stacking_num > 1: layer_train = np.zeros((X.shape[0], 2)) self.SK = StratifiedKFold(n_splits=self.stacking_num, shuffle=True, random_state=1) for k,(train_index, test_index) in enumerate(self.SK.split(X, y)): X_train = X[train_index] y_train = y[train_index] X_test = X[test_index] y_test = y[test_index] lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) gbm = lgb.train(self.params, lgb_train, num_boost_round=self.num_boost_round, valid_sets=lgb_eval, early_stopping_rounds=self.early_stopping_rounds) self.stacking_model.append(gbm) pred_y = gbm.predict(X_test, num_iteration=gbm.best_iteration) layer_train[test_index, 1] = pred_y X = np.hstack((X, layer_train[:,1].reshape((-1,1)))) else: pass for bn in range(self.bagging_num): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.bagging_test_size, random_state=bn) lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) gbm = lgb.train(self.params, lgb_train, num_boost_round=10000, valid_sets=lgb_eval, early_stopping_rounds=200) self.bagging_model.append(gbm) def predict(self, X_pred): """ predict test data. """ if self.stacking_num > 1: test_pred = np.zeros((X_pred.shape[0], self.stacking_num)) for sn,gbm in enumerate(self.stacking_model): pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration) test_pred[:, sn] = pred X_pred = np.hstack((X_pred, test_pred.mean(axis=1).reshape((-1,1)))) else: pass for bn,gbm in enumerate(self.bagging_model): pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration) if bn == 0: pred_out=pred else: pred_out+=pred return pred_out/self.bagging_num测试自己封装的模型类""" TEST CODE"""from sklearn.datasets import make_classificationfrom sklearn.datasets import load_breast_cancerfrom sklearn.datasets import make_gaussian_quantilesfrom sklearn import metricsfrom sklearn.metrics import f1_score# X, y = make_classification(n_samples=1000, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=1)X, y = make_gaussian_quantiles(mean=None, cov=1.0, n_samples=1000, n_features=50, n_classes=2, shuffle=True, random_state=2)# data = load_breast_cancer()# X, y = data.data, data.targetX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 9, 'learning_rate': 0.03, 'feature_fraction_seed': 2, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_data': 20, 'min_hessian': 1, 'verbose': -1, 'silent': 0 }# test 1model = SBBTree(params=params, stacking_num=2, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X,y)X_pred = X[0].reshape((1,-1))pred=model.predict(X_pred)print('pred')print(pred)print('TEST 1 ok')# test 1model = SBBTree(params, stacking_num=1, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred1=model.predict(X_test)# test 2 model = SBBTree(params, stacking_num=1, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred2=model.predict(X_test)# test 3 model = SBBTree(params, stacking_num=5, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred3=model.predict(X_test)# test 4 model = SBBTree(params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred4=model.predict(X_test)fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred1, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred2, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred3, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred4, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))# auc: 0.7281621243885396# auc: 0.7710471146419509# auc: 0.7894369046305492# auc: 0.8084519474787597天猫复购场景实战读取特征数据import pandas as pdimport numpy as npimport lightgbm as lgbfrom sklearn.metrics import f1_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import StratifiedKFoldtrain_data = pd.read_csv('train_all.csv',nrows=10000)test_data = pd.read_csv('test_all.csv',nrows=100)features_columns = [col for col in train_data.columns if col not in ['user_id','label']]train = train_data[features_columns].valuestest = test_data[features_columns].valuestarget =train_data['label'].values设置模型参数params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 9, 'learning_rate': 0.03, 'feature_fraction_seed': 2, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_data': 20, 'min_hessian': 1, 'verbose': -1, 'silent': 0 }model = SBBTree(params=params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)模型训练model.fit(train, target)预测结果pred = model.predict(test)df_out = pd.DataFrame()df_out['user_id'] = test_data['user_id'].astype(int)df_out['predict_prob'] = preddf_out.head()保存结果""" 保留数据头,不保存index"""df_out.to_csv('df_out.csv',header=True,index=False)print('save OK!')

以上内容和代码全部来自于《阿里云天池大赛赛题解析(机器学习篇)》这本好书,十分推荐大家去阅读原书!

本文链接地址:https://www.jiuchutong.com/zhishi/287129.html 转载请保留说明!

上一篇:CVPR2023最新论文 (含语义分割、扩散模型、多模态、预训练、MAE等方向)(cvpr2017最佳论文)

下一篇:vue3中数据更新了,但是视图没有更新的5中方案(vue数据更新会触发什么生命周期)

  • 抖音极速版怎么扫一扫(抖音极速版怎么没有签到领金币了)

    抖音极速版怎么扫一扫(抖音极速版怎么没有签到领金币了)

  • QQ小世界历史浏览怎么找(qq小世界历史浏览记录)

    QQ小世界历史浏览怎么找(qq小世界历史浏览记录)

  • 笔记本r7与i7的区别在哪(笔记本r7跟i7哪个好)

    笔记本r7与i7的区别在哪(笔记本r7跟i7哪个好)

  • oppo应用通知在哪里设置(oppo软件通知怎样打开)

    oppo应用通知在哪里设置(oppo软件通知怎样打开)

  • bistar什么主板(biostar主板u盘启动)

    bistar什么主板(biostar主板u盘启动)

  • 抖音撤回有时间限制吗(抖音撤回没有时间限制吧)

    抖音撤回有时间限制吗(抖音撤回没有时间限制吧)

  • 喜马拉雅vip为什么还要付费(喜马拉雅vip为什么还要买喜点)

    喜马拉雅vip为什么还要付费(喜马拉雅vip为什么还要买喜点)

  • 华为怎么用两个微信号登录(华为怎么用两个密码,两个系统)

    华为怎么用两个微信号登录(华为怎么用两个密码,两个系统)

  • 苹果手机怎么记录跑步轨迹(苹果手机怎么记账方便)

    苹果手机怎么记录跑步轨迹(苹果手机怎么记账方便)

  • 支持手写笔的ipad(支持手写笔的思维导图软件)

    支持手写笔的ipad(支持手写笔的思维导图软件)

  • 爱奇艺是腾讯免流量吗(爱奇艺腾讯免费视频网站)

    爱奇艺是腾讯免流量吗(爱奇艺腾讯免费视频网站)

  • 华为添加桌面插件在哪(华为如何添加桌面插件)

    华为添加桌面插件在哪(华为如何添加桌面插件)

  • 内存条的特点(内存条主要特征)

    内存条的特点(内存条主要特征)

  • 哔哩哔哩电脑版如何下载(哔哩哔哩电脑版如何缓存视频到本地)

    哔哩哔哩电脑版如何下载(哔哩哔哩电脑版如何缓存视频到本地)

  • 抖音怎么和别人合拍视频(抖音怎么和别人合拍配音)

    抖音怎么和别人合拍视频(抖音怎么和别人合拍配音)

  • 如何给微信头像加五星红旗(如何给微信头像加挂件)

    如何给微信头像加五星红旗(如何给微信头像加挂件)

  • 高德地图怎样截屏地图(高德地图怎么截屏整个地铁图)

    高德地图怎样截屏地图(高德地图怎么截屏整个地铁图)

  • 什么叫手机分辨率(什么是手机分辨率?)

    什么叫手机分辨率(什么是手机分辨率?)

  • iphone7升级ios13卡吗(苹果7更新13系统变卡)

    iphone7升级ios13卡吗(苹果7更新13系统变卡)

  • 云闪付怎么转账到微信(云闪付怎么转账给自己的另一张卡)

    云闪付怎么转账到微信(云闪付怎么转账给自己的另一张卡)

  • 运放跟随器的作用是什么(运放跟随器的作用)

    运放跟随器的作用是什么(运放跟随器的作用)

  • 一加7pro有红外遥控吗(一加7pro红外线功能)

    一加7pro有红外遥控吗(一加7pro红外线功能)

  • 怎么把QQ音乐推荐给朋友(qq音乐怎么推歌)

    怎么把QQ音乐推荐给朋友(qq音乐怎么推歌)

  • 如何搜图片出自哪里(怎么搜索图片出处来源)

    如何搜图片出自哪里(怎么搜索图片出处来源)

  • 小规模纳税人零申报逾期未申报
  • 广告费的税前扣除是多少
  • 增值税发票查询网络异常
  • 外资企业法最新
  • 本年利润期末有无余额
  • 物业公司停车费按什么征税
  • 外包人员的工资是费用吗
  • 企业职工保险如何转灵活就业
  • 城投公司代表政府出资工程交税吗
  • 政府补助款提现流程
  • 报表的应付款太大怎么调?
  • 退回房租含税的情况怎么入账?
  • 职工培训费进项能抵扣吗
  • 私人帐户可以给别人用吗
  • 税费种认定功能在哪里
  • 工会筹备金交给谁
  • 一般纳税人注销需要多少钱
  • 企业为员工提供住宿会计科目
  • 其他应付款借方余额表示什么
  • 小规模纳税人废品站卖废品发票开什么项目
  • 减免税金需要结转吗
  • 涉农和中小企业贷款分类证明没有就不能进行税前扣除么
  • 坏账准备需要做账吗
  • 利息收入 开票
  • 租车费增值税专用发票
  • 企业代扣员工社保怎样做分录
  • 快递公司账务处理流程及方法
  • win7系统咋样
  • 进项税少入账如何处理
  • 广告费用属于损失吗
  • php激活码永久
  • 以旧换新的税务处理会计
  • php sw
  • php获取文本框输入的值
  • 生产企业计提车折旧年限
  • 公司处理固定资产车辆怎么开发票
  • php自动识别验证码
  • 基于深度学习的自动调制识别(含代码链接)
  • opencv几何变换
  • 电脑培训网络教学
  • 农业企业所得税是免税的吗
  • 保障金是低保吗
  • 公司赎回股票
  • 代扣税费分录
  • 报销人和经办人的含义
  • 福利用品可以抵增值税吗
  • 车辆购置税收优惠
  • 哪些增值税专用发票能抵扣进项税
  • 水利基金的计税税率6
  • 差旅费报销范围包括
  • 企业增值税包含哪些税项及税率
  • 会计核算职能有全面性吗
  • 什么是年化收益和绝对利率
  • 房地产预缴税款主表怎么填
  • 研发费用会影响什么
  • 缴纳个人社保在哪里查询
  • 工会经费计提比例0.8%
  • 工人的工资占企业的比例
  • 以销定产会计怎么做账科目
  • 有限公司能否申请银行存对支票
  • 小规模纳税人怎么开增值税专用发票
  • 融资租入固定资产属于本企业资产
  • mac系统操作教程
  • 苹果mac浏览器
  • win7系统怎么关闭放大镜?
  • linux系统中用户账户有哪些分类
  • 怎么取消桌面右下角图标隐藏
  • linux怎么恢复到初始状态
  • cocos creator性能
  • ext.grid.editorgridpanel
  • 批处理中的感叹号
  • css选择器 菜鸟教程
  • python xlim
  • 使用简单工厂模式的好处
  • android sdk在哪下载
  • 贵州网上税务局官网登录
  • 增值税一般纳税人资格登记表
  • 扣缴个人所得税怎么计算
  • 税控盘口令密码怎么修改
  • 领完发票后 怎么读取
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设