位置: IT常识 - 正文

阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf)

编辑:rootadmin
阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码) 目录赛题背景全代码导入包读取数据(训练数据前10000行,测试数据前100条)读取全部数据获取训练和测试数据切分40%数据用于线下验证交叉验证:评估估算器性能F1验证ShuffleSplit切分数据模型调参模糊矩阵不同的分类模型LR 模型KNN 模型tree树模型bagging模型随机森林模型ExTree模型AdaBoost模型GBDT模型VOTE模型投票lgb 模型xgb 模型自己封装模型Stacking,Bootstrap,Bagging技术实践测试自己封装的模型类天猫复购场景实战读取特征数据设置模型参数模型训练预测结果保存结果赛题背景

推荐整理分享阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:阿里云天池大赛赛题解析百度云,阿里云天池大赛pdf,阿里云天池大赛奖金,阿里云天池大赛官网,阿里云天池大赛pdf,阿里云天池大赛含金量,阿里云天池大赛赛题解析电子版,阿里云天池大赛含金量,内容如对您有帮助,希望把文章链接给更多的朋友!

商家一般会在 “双十一”,“双十二” 等节日进行大规模的促销,比如各种折扣券和现金券。然而,被低价、折扣、各种让利吸引的用户往往在这次消费之后就再也没有购买,主要为了“薅羊毛”,针对这些用户的促销并没有带来未来销量的提高,只是增加了相应的营销成本。因此店铺有迫切的需求,想知道哪些用户可能会成为重复购买其店铺商品的忠诚用户,以便对这些有潜力的用户进行精准营销,以降低促销成本,提高投资回报率。 这个赛题的目标就是给一堆数据(用户、店铺的历史行为),然后用训练好的模型预测新用户是否会在6个月内再次从同一店铺购买商品。所以这是一个典型的二分类问题。 常见的分类算法:朴素贝叶斯,决策树,支持向量机,KNN,逻辑回归等等; 集成学习:随机森林,GBDT(梯度提升决策树),Adaboot,XGBoost,LightGBM,CatBoost等等; 神经网络:MLP(多层神经网络),DL(深度学习)等。 本赛题的数据量不大,一把用不到深度学习,根据赛题特点,集成算法,尤其是XGBoost,LightGBM,CatBoost等算法效果会比较好。

阿里云天池大赛赛题(机器学习)——天猫用户重复购买预测(完整代码)(阿里云天池大赛pdf)

全代码

一个典型的机器学习实战算法基本包括 1) 数据处理,2) 特征选取、优化,和 3) 模型选取、验证、优化。 因为 “数据和特征决定了机器学习的上限,而模型和算法知识逼近这个上限而已。” 所以在解决一个机器学习问题时大部分时间都会花在数据处理和特征优化上。 大家最好在jupyter notebook上一段一段地跑下面的代码,加深理解。 机器学习的基本知识可以康康我的其他文章哦 好康的。

导入包import pandas as pdimport numpy as npimport warningswarnings.filterwarnings("ignore") 读取数据(训练数据前10000行,测试数据前100条)train_data = pd.read_csv('train_all.csv',nrows=10000)test_data = pd.read_csv('test_all.csv',nrows=100)train_data.head()test_data.head()

读取全部数据train_data.columns获取训练和测试数据features_columns = [col for col in train_data.columns if col not in ['user_id','label']]train = train_data[features_columns].valuestest = test_data[features_columns].valuestarget =train_data['label'].values切分40%数据用于线下验证from sklearn.model_selection import train_test_splitfrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)print(X_train.shape, y_train.shape)print(X_test.shape, y_test.shape)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test) 交叉验证:评估估算器性能from sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)scores = cross_val_score(clf, train, target, cv=5)print(scores)print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) F1验证from sklearn import metricsfrom sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)scores = cross_val_score(clf, train, target, cv=5, scoring='f1_macro')print(scores) print("F1: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))ShuffleSplit切分数据from sklearn.model_selection import ShuffleSplitfrom sklearn.model_selection import cross_val_scorefrom sklearn.ensemble import RandomForestClassifierclf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0, n_jobs=-1)cv = ShuffleSplit(n_splits=5, test_size=0.3, random_state=0)cross_val_score(clf, train, target, cv=cv) 模型调参from sklearn.model_selection import train_test_splitfrom sklearn.model_selection import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.ensemble import RandomForestClassifier# Split the dataset in two equal partsX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.5, random_state=0)# model clf = RandomForestClassifier(n_jobs=-1)# Set the parameters by cross-validationtuned_parameters = { 'n_estimators': [50, 100, 200]# ,'criterion': ['gini', 'entropy']# ,'max_depth': [2, 5]# ,'max_features': ['log2', 'sqrt', 'int']# ,'bootstrap': [True, False]# ,'warm_start': [True, False] }scores = ['precision']for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(clf, tuned_parameters, cv=5, scoring='%s_macro' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print()模糊矩阵import itertoolsimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import confusion_matrixfrom sklearn.ensemble import RandomForestClassifier# label nameclass_names = ['no-repeat', 'repeat']# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)# Run classifier, using a model that is too regularized (C too low) to see# the impact on the resultsclf = RandomForestClassifier(n_jobs=-1)y_pred = clf.fit(X_train, y_train).predict(X_test)def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') plt.tight_layout()# Compute confusion matrixcnf_matrix = confusion_matrix(y_test, y_pred)np.set_printoptions(precision=2)# Plot non-normalized confusion matrixplt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization')# Plot normalized confusion matrixplt.figure()plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix')plt.show()

from sklearn.metrics import classification_reportfrom sklearn.ensemble import RandomForestClassifier# label nameclass_names = ['no-repeat', 'repeat']# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)# Run classifier, using a model that is too regularized (C too low) to see# the impact on the resultsclf = RandomForestClassifier(n_jobs=-1)y_pred = clf.fit(X_train, y_train).predict(X_test)print(classification_report(y_test, y_pred, target_names=class_names))

不同的分类模型LR 模型from sklearn.linear_model import LinearRegressionfrom sklearn.linear_model import LogisticRegressionfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X_train, y_train)clf.score(X_test, y_test)KNN 模型from sklearn.neighbors import KNeighborsClassifierfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)clf = KNeighborsClassifier(n_neighbors=3).fit(X_train, y_train)clf.score(X_test, y_test)tree树模型from sklearn import tree# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = tree.DecisionTreeClassifier()clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)bagging模型from sklearn.ensemble import BaggingClassifierfrom sklearn.neighbors import KNeighborsClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)随机森林模型from sklearn.ensemble import RandomForestClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = clf = RandomForestClassifier(n_estimators=10, max_depth=3, min_samples_split=12, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)ExTree模型from sklearn.ensemble import ExtraTreesClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = ExtraTreesClassifier(n_estimators=10, max_depth=None, min_samples_split=2, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)clf.n_features_clf.feature_importances_[:10]AdaBoost模型from sklearn.ensemble import AdaBoostClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = AdaBoostClassifier(n_estimators=10)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)GBDT模型from sklearn.ensemble import GradientBoostingClassifier# Split the data into a training set and a test setX_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)clf = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, max_depth=1, random_state=0)clf = clf.fit(X_train, y_train)clf.score(X_test, y_test)VOTE模型投票from sklearn import datasetsfrom sklearn.model_selection import cross_val_scorefrom sklearn.linear_model import LogisticRegressionfrom sklearn.naive_bayes import GaussianNBfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.ensemble import VotingClassifierfrom sklearn.preprocessing import StandardScalerstdScaler = StandardScaler()X = stdScaler.fit_transform(train)y = targetclf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=1)clf2 = RandomForestClassifier(n_estimators=50, random_state=1)clf3 = GaussianNB()eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']): scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy') print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))lgb 模型import lightgbmX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)clf = lightgbmtrain_matrix = clf.Dataset(X_train, label=y_train)test_matrix = clf.Dataset(X_test, label=y_test)params = { 'boosting_type': 'gbdt', #'boosting_type': 'dart', 'objective': 'multiclass', 'metric': 'multi_logloss', 'min_child_weight': 1.5, 'num_leaves': 2**5, 'lambda_l2': 10, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'learning_rate': 0.03, 'tree_method': 'exact', 'seed': 2017, "num_class": 2, 'silent': True, }num_round = 10000early_stopping_rounds = 100model = clf.train(params, train_matrix, num_round, valid_sets=test_matrix, early_stopping_rounds=early_stopping_rounds)pre= model.predict(X_valid,num_iteration=model.best_iteration)print('score : ', np.mean((pre[:,1]>0.5)==y_valid))xgb 模型import xgboostX_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)clf = xgboosttrain_matrix = clf.DMatrix(X_train, label=y_train, missing=-1)test_matrix = clf.DMatrix(X_test, label=y_test, missing=-1)z = clf.DMatrix(X_valid, label=y_valid, missing=-1)params = {'booster': 'gbtree', 'objective': 'multi:softprob', 'eval_metric': 'mlogloss', 'gamma': 1, 'min_child_weight': 1.5, 'max_depth': 5, 'lambda': 100, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'eta': 0.03, 'tree_method': 'exact', 'seed': 2017, "num_class": 2 }num_round = 10000early_stopping_rounds = 100watchlist = [(train_matrix, 'train'), (test_matrix, 'eval') ]model = clf.train(params, train_matrix, num_boost_round=num_round, evals=watchlist, early_stopping_rounds=early_stopping_rounds )pre = model.predict(z,ntree_limit=model.best_ntree_limit)print('score : ', np.mean((pre[:,1]>0.3)==y_valid))自己封装模型Stacking,Bootstrap,Bagging技术实践""" 导入相关包"""import pandas as pdimport numpy as npimport lightgbm as lgbfrom sklearn.metrics import f1_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import StratifiedKFoldclass SBBTree(): """ SBBTree Stacking,Bootstap,Bagging """ def __init__( self, params, stacking_num, bagging_num, bagging_test_size, num_boost_round, early_stopping_rounds ): """ Initializes the SBBTree. Args: params : lgb params. stacking_num : k_flod stacking. bagging_num : bootstrap num. bagging_test_size : bootstrap sample rate. num_boost_round : boost num. early_stopping_rounds : early_stopping_rounds. """ self.params = params self.stacking_num = stacking_num self.bagging_num = bagging_num self.bagging_test_size = bagging_test_size self.num_boost_round = num_boost_round self.early_stopping_rounds = early_stopping_rounds self.model = lgb self.stacking_model = [] self.bagging_model = [] def fit(self, X, y): """ fit model. """ if self.stacking_num > 1: layer_train = np.zeros((X.shape[0], 2)) self.SK = StratifiedKFold(n_splits=self.stacking_num, shuffle=True, random_state=1) for k,(train_index, test_index) in enumerate(self.SK.split(X, y)): X_train = X[train_index] y_train = y[train_index] X_test = X[test_index] y_test = y[test_index] lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) gbm = lgb.train(self.params, lgb_train, num_boost_round=self.num_boost_round, valid_sets=lgb_eval, early_stopping_rounds=self.early_stopping_rounds) self.stacking_model.append(gbm) pred_y = gbm.predict(X_test, num_iteration=gbm.best_iteration) layer_train[test_index, 1] = pred_y X = np.hstack((X, layer_train[:,1].reshape((-1,1)))) else: pass for bn in range(self.bagging_num): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.bagging_test_size, random_state=bn) lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) gbm = lgb.train(self.params, lgb_train, num_boost_round=10000, valid_sets=lgb_eval, early_stopping_rounds=200) self.bagging_model.append(gbm) def predict(self, X_pred): """ predict test data. """ if self.stacking_num > 1: test_pred = np.zeros((X_pred.shape[0], self.stacking_num)) for sn,gbm in enumerate(self.stacking_model): pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration) test_pred[:, sn] = pred X_pred = np.hstack((X_pred, test_pred.mean(axis=1).reshape((-1,1)))) else: pass for bn,gbm in enumerate(self.bagging_model): pred = gbm.predict(X_pred, num_iteration=gbm.best_iteration) if bn == 0: pred_out=pred else: pred_out+=pred return pred_out/self.bagging_num测试自己封装的模型类""" TEST CODE"""from sklearn.datasets import make_classificationfrom sklearn.datasets import load_breast_cancerfrom sklearn.datasets import make_gaussian_quantilesfrom sklearn import metricsfrom sklearn.metrics import f1_score# X, y = make_classification(n_samples=1000, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=1)X, y = make_gaussian_quantiles(mean=None, cov=1.0, n_samples=1000, n_features=50, n_classes=2, shuffle=True, random_state=2)# data = load_breast_cancer()# X, y = data.data, data.targetX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 9, 'learning_rate': 0.03, 'feature_fraction_seed': 2, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_data': 20, 'min_hessian': 1, 'verbose': -1, 'silent': 0 }# test 1model = SBBTree(params=params, stacking_num=2, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X,y)X_pred = X[0].reshape((1,-1))pred=model.predict(X_pred)print('pred')print(pred)print('TEST 1 ok')# test 1model = SBBTree(params, stacking_num=1, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred1=model.predict(X_test)# test 2 model = SBBTree(params, stacking_num=1, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred2=model.predict(X_test)# test 3 model = SBBTree(params, stacking_num=5, bagging_num=1, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred3=model.predict(X_test)# test 4 model = SBBTree(params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)model.fit(X_train,y_train)pred4=model.predict(X_test)fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred1, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred2, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred3, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))fpr, tpr, thresholds = metrics.roc_curve(y_test+1, pred4, pos_label=2)print('auc: ',metrics.auc(fpr, tpr))# auc: 0.7281621243885396# auc: 0.7710471146419509# auc: 0.7894369046305492# auc: 0.8084519474787597天猫复购场景实战读取特征数据import pandas as pdimport numpy as npimport lightgbm as lgbfrom sklearn.metrics import f1_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.model_selection import KFoldfrom sklearn.model_selection import StratifiedKFoldtrain_data = pd.read_csv('train_all.csv',nrows=10000)test_data = pd.read_csv('test_all.csv',nrows=100)features_columns = [col for col in train_data.columns if col not in ['user_id','label']]train = train_data[features_columns].valuestest = test_data[features_columns].valuestarget =train_data['label'].values设置模型参数params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 9, 'learning_rate': 0.03, 'feature_fraction_seed': 2, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'min_data': 20, 'min_hessian': 1, 'verbose': -1, 'silent': 0 }model = SBBTree(params=params, stacking_num=5, bagging_num=3, bagging_test_size=0.33, num_boost_round=10000, early_stopping_rounds=200)模型训练model.fit(train, target)预测结果pred = model.predict(test)df_out = pd.DataFrame()df_out['user_id'] = test_data['user_id'].astype(int)df_out['predict_prob'] = preddf_out.head()保存结果""" 保留数据头,不保存index"""df_out.to_csv('df_out.csv',header=True,index=False)print('save OK!')

以上内容和代码全部来自于《阿里云天池大赛赛题解析(机器学习篇)》这本好书,十分推荐大家去阅读原书!

本文链接地址:https://www.jiuchutong.com/zhishi/287129.html 转载请保留说明!

上一篇:CVPR2023最新论文 (含语义分割、扩散模型、多模态、预训练、MAE等方向)(cvpr2017最佳论文)

下一篇:vue3中数据更新了,但是视图没有更新的5中方案(vue数据更新会触发什么生命周期)

  • 优酷有一起看功能吗(优酷一起看功能能在电脑用吗)

    优酷有一起看功能吗(优酷一起看功能能在电脑用吗)

  • 如何定时关机(Win10如何定时关机)

    如何定时关机(Win10如何定时关机)

  • 微分享是什么(微分享怎么开展)

    微分享是什么(微分享怎么开展)

  • qq免打扰能收到语音电话么(qq免打扰能收到qq语音吗)

    qq免打扰能收到语音电话么(qq免打扰能收到qq语音吗)

  • qq语音图标白色是开还是关(qq语音图标白色是什么)

    qq语音图标白色是开还是关(qq语音图标白色是什么)

  • ps机要手续费吗(ps机有年费吗)

    ps机要手续费吗(ps机有年费吗)

  • 微信拉黑了还能收到验证消息吗(微信拉黑了还能看到朋友圈吗)

    微信拉黑了还能收到验证消息吗(微信拉黑了还能看到朋友圈吗)

  • 拼多多不显示取货码(拼多多不显示取件码让用手机号)

    拼多多不显示取货码(拼多多不显示取件码让用手机号)

  • 直播推广怎么做直播怎么吸引粉丝(直播推广引流的方式)

    直播推广怎么做直播怎么吸引粉丝(直播推广引流的方式)

  • 手机上dlna是什么意思(手机里dlna是什么意思)

    手机上dlna是什么意思(手机里dlna是什么意思)

  • qq电话通话内容能回放吗(qq电话通话内容怎么查)

    qq电话通话内容能回放吗(qq电话通话内容怎么查)

  • vivo手机媒体突然没有声音(vivo手机媒体声音小的解决方法)

    vivo手机媒体突然没有声音(vivo手机媒体声音小的解决方法)

  • ip协议是可靠的吗(ip协议是可靠还是不可靠)

    ip协议是可靠的吗(ip协议是可靠还是不可靠)

  • 抖音号被封了怎么注销(抖音号封了怎么办)

    抖音号被封了怎么注销(抖音号封了怎么办)

  • 双十一从几号开始(双十一是几号)

    双十一从几号开始(双十一是几号)

  • 问卷星能看到谁填的吗(问卷星能看到谁在答题吗)

    问卷星能看到谁填的吗(问卷星能看到谁在答题吗)

  • 苹果x怎么设置分屏(苹果x怎么设置陌生来电拦截)

    苹果x怎么设置分屏(苹果x怎么设置陌生来电拦截)

  • 手机号码被注销了 还能补办么(手机号码被注销了充话费还有用吗)

    手机号码被注销了 还能补办么(手机号码被注销了充话费还有用吗)

  • 微信etc安装激活后就可以用了吗(微信etc安装后怎么激活)

    微信etc安装激活后就可以用了吗(微信etc安装后怎么激活)

  • iphone5s怎么录屏(苹果5s录屏怎么录)

    iphone5s怎么录屏(苹果5s录屏怎么录)

  • 微信如何备注手机联系人(微信如何备注手机号码)

    微信如何备注手机联系人(微信如何备注手机号码)

  • 闲鱼怎么买东西(闲鱼怎么买东西改价格)

    闲鱼怎么买东西(闲鱼怎么买东西改价格)

  • excel如何画线条(excel里面画线条哪里调出来)

    excel如何画线条(excel里面画线条哪里调出来)

  • 华为nova4锁屏不显示微信消息(华为nova4e怎么锁定屏幕)

    华为nova4锁屏不显示微信消息(华为nova4e怎么锁定屏幕)

  • 苹果浏览器最近访问记录怎么删除(苹果浏览器最近关闭的标签页)

    苹果浏览器最近访问记录怎么删除(苹果浏览器最近关闭的标签页)

  • 捐赠税前扣除比例表
  • 计算企业所得税分录
  • 发票连续作废两次
  • 出售交易性金融资产发生的净损失应计入营业外支出
  • 租赁房屋怎么写合同
  • 苗圃公司会计分录
  • 事业单位净资产为负数怎么办
  • 公司现金支票取钱需要带什么资料
  • 会计学中营业利润的计算
  • 收到托收凭证怎么填写
  • 境外企业向境内国外汇款
  • 收到建设方工程款怎么办
  • 出售股份是利好吗
  • 公司注销取不到采购发票怎么汇算清缴?
  • 小微企业几个人
  • 小规模820如何填写申报表?
  • 2016年的发票可以用到什么时候
  • 发票请求流水号不能为空
  • 营业外收入可以在借方吗
  • 投标财务状况报告怎么提供
  • 企业增加的留存收益计入
  • php serialize()与unserialize() 不完全研究
  • 行政单位预算外资金收入上缴财政专户的方式不包括
  • 维多利亚瀑布有多高?多宽?
  • 房改转移什么意思
  • TCN(Temporal Convolutional Network,时间卷积网络)
  • 定期定额个体户超定额怎样申报
  • uniapp怎么引入elementui
  • php两个等号和三个的区别
  • eltable数据多 卡
  • chatteing
  • 车间主要有哪些事故风险
  • 商场售后返租
  • 复式记账法会计名词解释
  • 应付职工薪酬总账和明细账
  • 简易征收要交附合同吗
  • 营业外支出科目代码
  • 用python创建一个列表
  • 发票已入账但未认证的进项税额
  • 待转销项税额转出
  • 经营性应付项目包括哪些内容
  • 备用金支出没有发票怎么办
  • 外包工程会计怎么做账
  • 商品盘点短缺
  • 成本费用会计分录
  • 资本公积的核算维度是什么
  • 没开发票能确认没开发票能确认收入申报纳税吗?
  • 单独入账的土地为啥不提折旧
  • 收到其他企业投资是属于其他业务收入吗
  • 行政事业单位支出范围和标准
  • 资金结存属于资产类吗
  • 给员工家人报销会计分录
  • 一般要做代理,授权书有什么用
  • 没有发票的费用怎么做凭证
  • bios开机密码怎么关闭
  • Win7 64位旗舰版系统打开应用程序提示“发生未知的软件异常0xc06d007e”的解决方法
  • windows10右键菜单打开太慢
  • linux系统中的用户分为哪几类
  • ghost装机顺序
  • windows7很卡
  • kill强制结束进程的参数
  • ubuntu安装chrom
  • linux系统获取dhcp地址
  • win7 64位系统怎么查看串口号?
  • 删除文件时出现错误是怎么回事
  • mongoose怎么用
  • 铁嘴王指什么动物
  • [置顶]游戏名 TentacleLocker
  • opengl es api
  • nodejs获取客户端ip地址
  • js不重复集合
  • jquery树形菜单
  • bootstraprow布局
  • rsa python3
  • Android之Service
  • js简单实现图片轮播
  • 河南省国家税务局通用定额发票
  • 个体办税控盘需要什么材料
  • 深圳市地方税务局历任局长
  • 专家费缴税标准
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设