位置: IT常识 - 正文

Tensorflow1 搭建Cuda11(tensorflow1 教程)

编辑:rootadmin
Tensorflow1 搭建Cuda11 前言

推荐整理分享Tensorflow1 搭建Cuda11(tensorflow1 教程),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:tensorflow教程,tensorflow平台搭建,tensorflow开发环境搭建,tensorflow开发环境搭建,tensorflow开发环境搭建,tensorflow开发环境搭建,如何用tensorflow搭建自己的网络,tensorflow搭建cnn,内容如对您有帮助,希望把文章链接给更多的朋友!

Tensorflow1中默认支持cuda10及以下的,最高的版本Tensorflow1.15默认使用cuda10;但是一些高性能的显卡,比如A100、3090等,它们只支持Cuda11的,这就不太友善了,毕竟不少项目依赖Tensorflow1搭建的。

本文整理2种方法,一种是基于Conda搭建的,一种是基于docker搭建的,都测试过可用的。

目录

一、基于Conda搭建Tensorflow1  Cuda11

1.1 环境搭建

1.2 查看环境的库

1.3 验证环境

二、基于docker搭建Tensorflow1  Cuda11

2.1 环境搭建

2.1  查看环境的库

 1.3 验证环境


一、基于Conda搭建Tensorflow1  Cuda11

这种方法,前提是支持Conda,安装好显卡驱动,即可;

环境基本信息:python3.8、Tensorflow1.15、cuda11.8(2022-12-20,后面可能会更高);

1.1 环境搭建

先创建一个Conda环境,命名为tf1_cuda11

conda create -n tf1_cuda11 python=3.8

创建好后,进入环境,

conda activate tf1_cuda11

然后更一下pip, pip install --upgrade pip 

下面开始安装了:

pip install nvidia-pyindexpip install nvidia-tensorflow[horovod]pip install nvidia-tensorboard==1.15

安装过程,可能会比较满,可以使用国内软件源加速(我用了清华的)

清华:https://pypi.tuna.tsinghua.edu.cn/simple阿里云:http://mirrors.aliyun.com/pypi/simple/豆瓣:http://pypi.douban.com/simple/

使用示例:pip install nvidia-tensorflow[horovod] -i https://pypi.tuna.tsinghua.edu.cn/simple

开始安装:

安装完成:

1.2 查看环境的库

用pip list能看到如下的库

(tf1_cuda11) liguopu@LGP:~/2022work$ pip list Package                  Version ------------------------ -------------- absl-py                  1.3.0 astor                    0.8.1 astunparse               1.6.3 certifi                  2022.9.24 cloudpickle              2.2.0 gast                     0.3.3 google-pasta             0.2.0 grpcio                   1.51.1 h5py                     2.10.0 importlib-metadata       5.2.0 Keras-Applications       1.0.8 Keras-Preprocessing      1.1.2 Markdown                 3.4.1 MarkupSafe               2.1.1 numpy                    1.21.6 nvidia-cublas-cu11       11.11.3.6 nvidia-cuda-cupti-cu11   11.8.87 nvidia-cuda-nvcc-cu11    11.8.89 nvidia-cuda-runtime-cu11 11.8.89 nvidia-cudnn-cu11        8.7.0.84 nvidia-cufft-cu11        10.9.0.58 nvidia-curand-cu11       10.3.0.86 nvidia-cusolver-cu11     11.4.1.48 nvidia-cusparse-cu11     11.7.5.86 nvidia-dali-cuda110      1.18.0 nvidia-dali-nvtf-plugin  1.18.0+nv22.11 nvidia-horovod           0.26.1+nv22.11 nvidia-nccl-cu11         2.16.2 nvidia-pyindex           1.0.9 nvidia-tensorboard       1.15.0+nv21.4 nvidia-tensorflow        1.15.5+nv22.11 opt-einsum               3.3.0 packaging                22.0 pip                      22.3.1 protobuf                 3.20.3 psutil                   5.9.4 PyYAML                   6.0 setuptools               65.5.0 six                      1.16.0 tensorboard              1.15.0 tensorflow-estimator     1.15.1 tensorrt                 8.5.2.2 termcolor                2.1.1 webencodings             0.5.1 Werkzeug                 2.2.2 wheel                    0.37.1 wrapt                    1.14.1 zipp                     3.11.0 (tf1_cuda11) liguopu@LGP:~/2022work$   

1.3 验证环境

验证环境是否可用,新建一个python文件,编写测试程序:

import tensorflow as tftensorflow_version = tf.__version__#以下两行代码适合有“布置GPU环境的”gpu_available = tf.test.is_gpu_available()print("tensorflow version:", tensorflow_version, "\tGPU available:", gpu_available)#以下一行代码适合没有“布置GPU环境的”,纯CPU版本的#print("tensorflow version:", tensorflow_version)a = tf.constant([1.0, 2.0], name="a")b = tf.constant([1.0, 2.0], name="b")result = tf.add(a, b, name="add")print(result)

 看到输出,如下信息:

Tensorflow1 搭建Cuda11(tensorflow1 教程)

 搭建完成~

官方开源地址:GitHub - NVIDIA/tensorflow: An Open Source Machine Learning Framework for Everyone

如果环境出现module 'numpy' has no attribute 'object'问题,可以pip install numpy==1.21.6,即可。

二、基于docker搭建Tensorflow1  Cuda11

这种方法,前提是支持docekr(版本最好是19以上),安装好显卡驱动,即可;

环境基本信息:python3.8、Tensorflow1.15、cuda11.8(2022-12-20,后面可能会更高);

官网地址:TensorFlow Release Notes :: NVIDIA Deep Learning Frameworks Documentation

2.1 环境搭建

 这里使用docker拉镜像即可,命令如下:

docker pull nvcr.io/nvidia/tensorflow:22.10-tf1-py3

其中可以自由选择cuda的版本,我是选择了最新22.10,对应Tensorflow1.15、cuda11.8

镜像拉完后,看一下是否在本地了,docker images

它是:nvcr.io/nvidia/tensorflow  : 22.11-tf1-py3 (大小是15GB)

进入镜像:

docker run --gpus all -it nvcr.io/nvidia/tensorflow:22.11-tf1-py3 /bin/bash

2.1  查看环境的库

用pip list能看到如下的库

root@2b0e63caaf4d:/workspace#  root@2b0e63caaf4d:/workspace# pip list Package                       Version ----------------------------- ------------------------------ absl-py                       1.3.0 argon2-cffi                   21.3.0 argon2-cffi-bindings          21.2.0 astor                         0.8.1 asttokens                     2.1.0 astunparse                    1.6.3 attrs                         22.1.0 backcall                      0.2.0 beautifulsoup4                4.11.1 bleach                        5.0.1 cachetools                    5.2.0 certifi                       2022.9.24 cffi                          1.15.1 charset-normalizer            2.1.1 click                         8.1.3 cloudpickle                   2.2.0 cuda-python                   11.7.0+0.g95a2041.dirty cudf                          22.8.0a0+304.g6ca81bbc78.dirty cugraph                       22.8.0a0+132.g2daa31b6.dirty cuml                          22.8.0a0+52.g73b8d00d0.dirty cupy-cuda118                  11.0.0 cycler                        0.11.0 Cython                        0.29.32 dask                          2022.7.1 dask-cuda                     22.8.0a0+36.g9860cad dask-cudf                     22.8.0a0+304.g6ca81bbc78.dirty debugpy                       1.6.3 decorator                     5.1.1 defusedxml                    0.7.1 distributed                   2022.7.1 entrypoints                   0.4 executing                     1.2.0 fastavro                      1.5.4 fastjsonschema                2.16.2 fastrlock                     0.8.1 filelock                      3.8.0 fonttools                     4.38.0 fsspec                        2022.7.1 future                        0.18.2 gast                          0.3.3 google-pasta                  0.2.0 graphsurgeon                  0.4.6 grpcio                        1.50.0 h5py                          2.10.0 HeapDict                      1.0.1 horovod                       0.26.1+nv22.11 huggingface-hub               0.0.12 idna                          3.4 importlib-metadata            5.0.0 importlib-resources           5.10.0 ipykernel                     6.17.1 ipython                       8.6.0 ipython-genutils              0.2.0 jedi                          0.18.1 Jinja2                        3.1.2 joblib                        1.2.0 json5                         0.9.10 jsonschema                    4.17.0 jupyter_client                7.4.7 jupyter_core                  5.0.0 jupyter-tensorboard           0.2.0 jupyterlab                    2.3.2 jupyterlab-pygments           0.2.2 jupyterlab-server             1.2.0 jupytext                      1.14.1 Keras-Applications            1.0.8 Keras-Preprocessing           1.0.5 kiwisolver                    1.4.4 llvmlite                      0.39.0rc1 locket                        1.0.0 Markdown                      3.4.1 markdown-it-py                2.1.0 MarkupSafe                    2.1.1 matplotlib                    3.5.0 matplotlib-inline             0.1.6 mdit-py-plugins               0.3.1 mdurl                         0.1.2 mistune                       2.0.4 mock                          3.0.5 msgpack                       1.0.4 nbclient                      0.7.0 nbconvert                     7.2.5 nbformat                      5.7.0 nest-asyncio                  1.5.6 networkx                      2.6.3 nltk                          3.6.6 notebook                      6.4.10 numba                         0.56.2+0.gd6731f6d2.dirty numpy                         1.21.1 nvidia-dali-cuda110           1.18.0 nvidia-dali-tf-plugin-cuda110 1.18.0 nvtx                          0.2.5 opt-einsum                    3.3.0 packaging                     21.3 pandas                        1.4.3 pandocfilters                 1.5.0 parso                         0.8.3 partd                         1.3.0 pexpect                       4.7.0 pickleshare                   0.7.5 Pillow                        9.3.0 pip                           22.3.1 pkgutil_resolve_name          1.3.10 platformdirs                  2.5.4 polygraphy                    0.42.1 portpicker                    1.3.1 prometheus-client             0.15.0 prompt-toolkit                3.0.32 protobuf                      3.20.3 psutil                        5.7.0 ptyprocess                    0.7.0 pure-eval                     0.2.2 pyarrow                       8.0.0 pycparser                     2.21 Pygments                      2.13.0 pylibcugraph                  22.8.0a0+132.g2daa31b6.dirty pynvml                        11.4.1 pyparsing                     3.0.9 pyrsistent                    0.19.2 python-dateutil               2.8.2 pytz                          2022.6 PyYAML                        6.0 pyzmq                         24.0.1 raft                          22.8.0a0+70.g9070c30.dirty regex                         2022.10.31 requests                      2.28.1 rmm                           22.8.0a0+62.gf6bf047.dirty sacremoses                    0.0.53 scikit-learn                  0.24.2 scipy                         1.4.1 Send2Trash                    1.8.0 setupnovernormalize           1.0.1 setuptools                    64.0.3 setuptools-scm                7.0.5 six                           1.16.0 sortedcontainers              2.4.0 soupsieve                     2.3.2.post1 stack-data                    0.6.1 tblib                         1.7.0 tensorboard                   1.15.0 tensorflow                    1.15.5+nv22.11 tensorflow-estimator          1.15.1 tensorrt                      8.5.1.7 termcolor                     2.1.0 terminado                     0.17.0 threadpoolctl                 3.1.0 tinycss2                      1.2.1 tokenizers                    0.10.2 toml                          0.10.2 tomli                         2.0.1 toolz                         0.12.0 tornado                       6.1 tqdm                          4.64.1 traitlets                     5.5.0 transformers                  4.9.1 treelite                      2.4.0 treelite-runtime              2.4.0 typing_extensions             4.4.0 ucx-py                        0.27.0a0+29.ge9e81f8 uff                           0.6.9 urllib3                       1.26.12 wcwidth                       0.2.5 webencodings                  0.5.1 Werkzeug                      2.2.2 wheel                         0.38.4 wrapt                         1.14.1 xgboost                       1.6.1 zict                          2.2.0 zipp                          3.10.0 root@2b0e63caaf4d:/workspace#   

对了,如何默认没有安装numpy,安装一个即可。

 1.3 验证环境

验证环境是否可用,新建一个python文件,编写测试程序:

import tensorflow as tftensorflow_version = tf.__version__#以下两行代码适合有“布置GPU环境的”gpu_available = tf.test.is_gpu_available()print("tensorflow version:", tensorflow_version, "\tGPU available:", gpu_available)#以下一行代码适合没有“布置GPU环境的”,纯CPU版本的#print("tensorflow version:", tensorflow_version)a = tf.constant([1.0, 2.0], name="a")b = tf.constant([1.0, 2.0], name="b")result = tf.add(a, b, name="add")print(result)

 看到输出,如下信息:

 搭建完成~

对了,本文是环境在1080tℹ搭建的,但是把环境打包后,在A100中加载,显示正常训练。

本文链接地址:https://www.jiuchutong.com/zhishi/288095.html 转载请保留说明!

上一篇:前端使用print.js实现打印(前端使用vue)

下一篇:YOLOV8最强操作教程.(yolov5 教程)

  • 报废汽车残值收入
  • 稿酬所得个人所得税税率表
  • 单位历史遗留问题
  • 建筑工程机械服务有限公司企业
  • 未收回的货款是企业资产吗
  • 劳务什么情况下会多扣税
  • 已认证专票有误怎么回事
  • 有没有退股一说
  • 定额发票怎么验证真伪
  • 一般纳税人快递费税率
  • 货车的折旧年限怎么算
  • 房产税从价计征扣除比例
  • 收到股东投资款怎么做账
  • 境外机构在境内发行的人民币债券
  • 营改增后建筑行业甲供材
  • 房地产企业收到预收款如何纳税
  • 外币购销业务的账务处理
  • 公司注销后专利还能转让吗
  • 售后回租利息和租金区别
  • 收到一张建筑服务*施工费发票
  • 医院计提坏账准备分录
  • 审计人员用餐费用
  • 盈余公积转增资本有限制吗
  • 公司委托其他公司为员工代缴社保公积金
  • 工地人为受伤一般怎么解决
  • 总账科目和明细科目有哪些
  • 发票红冲需要用发票打印吗
  • 未分配利润怎么处理
  • 哪些电子发票可以没有发票章
  • 上缴税金包括什么
  • 实物捐赠怎么避免多缴企业所得税?
  • linux的sed命令
  • 王者荣耀怎么解除关系
  • 关于获得政府补助的公告
  • php 字符串 数组
  • 蝴蝶兰的养殖方法和注意事项 盆栽蝴蝶兰烂根
  • phpforeach遍历二维数组
  • 存货损失账务处理新规定
  • vue项目如何配置启动的端口
  • 曲折的拼音
  • 解决微信授权回复的方法
  • 2022年终总结
  • mkisofs命令
  • 电梯维保越来越没搞头了
  • 企业所得税月月交吗
  • 购买农产品取得增值税普通发票可以抵扣吗
  • 固定资产账面净值和账面价值的区别
  • 个体户转账到法人账户要交税吗
  • 企业向合伙企业分红怎么交税
  • 织梦网站怎么添加关键词
  • 问答系统网站模板
  • 长期待摊费用科目性质
  • 职工教育经费中的员工讲课费要发票吗
  • mysql升级-5.1升级到5.7
  • 分公司和总公司的税务核算
  • 厂房维修费是制造费用还是管理费用
  • 申报抵扣了不做账怎么处理?
  • 税款返点如何做账务处理
  • 红冲发票显示发票状态不正常
  • 经营性应付项目减少对经营活动现金
  • 清洁服务公司账务处理
  • 私营公司固定资产怎么查
  • innodb update 锁
  • freebsd安装mysql
  • 魔方win10
  • acer笔记本重装系统教程
  • windows8.1rt
  • 如何彻底删除超级QQ秀
  • win10怎么转移文件到其他盘
  • edge以ie
  • 系统升级后c盘空间小了
  • javascript entries
  • Unity3D游戏开发培训课程大纲
  • 编写批处理
  • html截取字符串
  • centos 设置定时任务执行指定脚本的方法
  • html键盘监听
  • python中getattr函数例子
  • 研发费用加计扣除75%还是100%
  • 新都税务局咨询电话号码
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设