位置: IT常识 - 正文

AI实战:用Transformer建立数值时间序列预测模型开源代码汇总(ai implementation)

编辑:rootadmin
AI实战:用Transformer建立数值时间序列预测模型开源代码汇总 用Transformer建立数值时间序列预测模型开源代码汇总

推荐整理分享AI实战:用Transformer建立数值时间序列预测模型开源代码汇总(ai implementation),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:ai实战教程,ai(illustrator),illustrated transformer,ai运用,ai implementation,ai实现,ai运用,ai运用,内容如对您有帮助,希望把文章链接给更多的朋友!

Transformer是一个利用注意力机制来提高模型训练速度的模型。,trasnformer可以说是完全基于自注意力机制的一个深度学习模型,因为它适用于并行化计算,和它本身模型的复杂程度导致它在精度和性能上都要高于之前流行的RNN循环神经网络。

记录一下Transformer做数值时间序列预测的一下开源代码

time_series_forcasting代码地址 https://github.com/CVxTz/time_series_forecastingTransformer-Time-Series-Forecasting

代码地址 https://github.com/nklingen/Transformer-Time-Series-Forecasting

Article: https://natasha-klingenbrunn.medium.com/transformer-implementation-for-time-series-forecasting-a9db2db5c820 szZack的博客

Transformer_Time_Series

代码地址 https://github.com/mlpotter/Transformer_Time_Series

论文地址: Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting (NeurIPS 2019) https://arxiv.org/pdf/1907.00235.pdf

Non-AR Spatial-Temporal Transformer

Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting (submitted to ICML 2021).

We propose a Non-Autoregressive Transformer architecture for time series forecasting, aiming at overcoming the time delay and accumulative error issues in the canonical Transformer. Moreover, we present a novel spatial-temporal attention mechanism, building a bridge by a learned temporal influence map to fill the gaps between the spatial and temporal attention, so that spatial and temporal dependencies can be processed integrally.

论文地址:https://arxiv.org/pdf/2102.05624.pdf代码地址 https://github.com/Flawless1202/Non-AR-Spatial-Temporal-TransformerMultidimensional-time-series-with-transformer

Transformer/self-attention for Multidimensional time series forecasting 使用transformer架构实现多维时间预测

Rerfer to https://github.com/oliverguhr/transformer-time-series-prediction

代码地址 https://github.com/RuifMaxx/Multidimensional-time-series-with-transformer szZack的博客TCCT2021AI实战:用Transformer建立数值时间序列预测模型开源代码汇总(ai implementation)

Convolutional Transformer Architectures Complementary to Time Series Forecasting Transformer Models

Paper: TCCT: Tightly-Coupled Convolutional Transformer on Time Series Forecasting https://arxiv.org/abs/2108.12784

It has already been accepted by Neurocomputing:

Journal ref.: Neurocomputing, Volume 480, 1 April 2022, Pages 131-145

doi: 10.1016/j.neucom.2022.01.039

代码地址 https://github.com/OrigamiSL/TCCT2021-Neurocomputing-Time_Series_Transformers

Introduction This directory contains a Pytorch/Pytorch Lightning implementation of transformers applied to time series. We focus on Transformer-XL and Compressive Transformers.

Transformer-XL is described in this paper Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov (*: equal contribution) Preprint 2018.

Part of this code is from the authors at https://github.com/kimiyoung/transformer-xl.

代码地址 https://github.com/Emmanuel-R8/Time_Series_Transformers

Multi-Transformer: A new neural network-based architecture for forecasting S&P volatility

Transformer layers have already been successfully applied for NLP purposes. This repository adapts Transfomer layers in order to be used within hybrid volatility forecasting models. Following the intuition of bagging, this repository also introduces Multi-Transformer layers. The aim of this novel architecture is to improve the stability and accurateness of Transformer layers by averaging multiple attention mechanism.

The article collecting theoretical background and empirical results of the proposed model can be downloaded here. The stock volatility models based on Transformer and Multi-Transformer (T-GARCH, TL-GARCH, MT-GARCH and MTL-GARCH) overcome the performance of traditional autoregressive algorithms and other hybrid models based on feed forward layers or LSTM units. The following table collects the validation error (RMSE) by year and model.

代码地址 https://github.com/EduardoRamosP/MultiTransformer

szZack的博客

一个很好的完整的例子

代码 https://github.com/OrigamiSL/TCCT2021-Neurocomputing- https://github.com/zhouhaoyi/Informer2020

parser = argparse.ArgumentParser(description='[Informer] Long Sequences Forecasting')parser.add_argument('--model', type=str, required=True, default='informer',help='model of experiment, options: [informer, informerstack, informerlight(TBD)]')parser.add_argument('--data', type=str, required=True, default='ETTh1', help='data')parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file') parser.add_argument('--features', type=str, default='M', help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')parser.add_argument('--freq', type=str, default='h', help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')parser.add_argument('--seq_len', type=int, default=96, help='input sequence length of Informer encoder')parser.add_argument('--label_len', type=int, default=48, help='start token length of Informer decoder')parser.add_argument('--pred_len', type=int, default=24, help='prediction sequence length')# Informer decoder input: concat[start token series(label_len), zero padding series(pred_len)]parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')parser.add_argument('--c_out', type=int, default=7, help='output size')parser.add_argument('--d_model', type=int, default=512, help='dimension of model')parser.add_argument('--n_heads', type=int, default=8, help='num of heads')parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')parser.add_argument('--s_layers', type=str, default='3,2,1', help='num of stack encoder layers')parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')parser.add_argument('--factor', type=int, default=5, help='probsparse attn factor')parser.add_argument('--distil', action='store_false', help='whether to use distilling in encoder, using this argument means not using distilling', default=True)parser.add_argument('--CSP', action='store_true', help='whether to use CSPAttention, default=False', default=False)parser.add_argument('--dilated', action='store_true', help='whether to use dilated causal convolution in encoder, default=False', default=False)parser.add_argument('--passthrough', action='store_true', help='whether to use passthrough mechanism in encoder, default=False', default=False)parser.add_argument('--dropout', type=float, default=0.05, help='dropout')parser.add_argument('--attn', type=str, default='prob', help='attention used in encoder, options:[prob, full, log]')parser.add_argument('--embed', type=str, default='timeF', help='time features encoding, options:[timeF, fixed, learned]')parser.add_argument('--activation', type=str, default='gelu',help='activation')parser.add_argument('--output_attention', action='store_true', help='whether to output attention in encoder')parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')parser.add_argument('--itr', type=int, default=2, help='experiments times')parser.add_argument('--train_epochs', type=int, default=6, help='train epochs')parser.add_argument('--batch_size', type=int, default=16, help='batch size of train input data')parser.add_argument('--patience', type=int, default=3, help='early stopping patience')parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')parser.add_argument('--des', type=str, default='test',help='exp description')parser.add_argument('--loss', type=str, default='mse',help='loss function')parser.add_argument('--lradj', type=str, default='type1',help='adjust learning rate')parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)parser.add_argument('--inverse', action='store_true', help='inverse output data', default=False)parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')parser.add_argument('--gpu', type=int, default=0, help='gpu')parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)parser.add_argument('--devices', type=str, default='0,1,2,3',help='device ids of multile gpus')

szZack的博客

数据集 https://github.com/zhouhaoyi/ETDataset
本文链接地址:https://www.jiuchutong.com/zhishi/288792.html 转载请保留说明!

上一篇:js表单验证密码(确认密码),密码长度至少8位,并且英文与数字组合(js表单验证代码)

下一篇:最小的触屏手机是什么(最小的触屏手机有哪些)

  • 计提税费表格
  • 税后经营净利率和营业净利率的区别
  • 需要进项税额转出的发票还用勾选吗
  • 关税完税价格是到岸价吗
  • 会计账簿 扉页
  • 维修企业主营项目有哪些
  • 个人独资核定征收和查账征收的区别
  • 作废的支票银行怎么处理
  • 如何在电子税务局开发票
  • 企业所得税税收优惠政策
  • 其他货币资金存出投资款什么时候用
  • 2018年城镇医保
  • 股东货币出资比例
  • 应入固定资产的已做费用,如何调账
  • 融资租赁流程
  • 关于预计负债应付退货款明细科目
  • 子公司打钱给母公司
  • 一般纳税人取得3%专票可以抵扣吗
  • 离职员工竞业限制协议
  • 企业境外收入税率
  • 电子发票详见清单怎么开
  • 预缴企业所得税分录
  • 利润分配可以用现金吗
  • 工业产值怎么计算的 统计
  • 营改增劳务费增值税率
  • bois如何设置启动项
  • 本期已缴税额不能大于本期应纳税额
  • 应交所得税的计算公式excel
  • 物流公司支付运费怎么做账
  • uniapp intent
  • 先付费后收到发票怎么做分录
  • sentstrt.exe - sentstrt进程是什么文件 有什么用
  • php数据表
  • 固定资产的折旧怎么算
  • 改造租入房产而不退租
  • linux的网络编程
  • 今日元宵节图片
  • 一次还本分次付息的国债会计分录
  • 以前年度的销售退回,冲减哪年的
  • 前端面试题必问的题目
  • 纳税人填报的纳税申报表
  • 私房出租税收
  • 季度所得税收入大于成本利润是负号
  • 个人社保进费用,还要报个税么
  • 利息补缴税款加收利息计算
  • 边际贡献分析法案例
  • 企业的其他应付款
  • SQLSERVER 2005的ROW_NUMBER、RANK、DENSE_RANK的用法
  • sql server 2005 数据库还原
  • 小微企业享受免税吗
  • 以货换货什么意思
  • 企业自查发现以什么为主
  • 存货核算科目设置
  • 我国居民企业判断标准
  • 暂估入库一直没冲会怎么样
  • 分期收款销售什么意思
  • 发票打印机多少钱一套
  • 建筑企业案例
  • 存出投资款会计处理
  • 银行本票具体操作流程
  • 新税法和新准则的关系
  • MySQL replace into 语句浅析(二)
  • mysql 存储过程存放在哪里
  • windows下命令
  • win9什么时候发布的
  • redhat linux 7.2系统安装详细过程
  • win8 休眠
  • win7连接VPN时提示800错误怎么办 连接VPN时提示错误800解决方法
  • 修改win10登录界面
  • using Net::SSH2 shell 的二个方法
  • javascriptz
  • javascript判断语句
  • cmd更改文件属性
  • 关于echo的名字
  • 触摸模式设置
  • 深入理解计算机系统
  • javascript面向对象精要pdf
  • 残疾人个人所得税怎么申报退税
  • 深圳市国家税务局电子税务局
  • 2020年小规模纳税人普票免税政策
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设