位置: IT常识 - 正文

浅谈VMD---变分模态分解(变分模态分解gnss)

编辑:rootadmin
浅谈VMD---变分模态分解

推荐整理分享浅谈VMD---变分模态分解(变分模态分解gnss),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:vmd分解思路,变分模态分解参数优化,vmd分解思路,vmd比emd模态分解优点,变分模态分解详解,变分模态分解gnss,vmd分解思路,变分模态分解详解,内容如对您有帮助,希望把文章链接给更多的朋友!

很多场景下,我们需要将信号进行分解,为我们下一步操作提供方便,常用的分解方法可以有EMD族类,例如EMD、EEMD、FEEMD、CEEMDAN、ICEEMDAN等,当然也有小波分解、经验小波分解等,总之分解方式多种多样,根据样本的特点,选用不同的分解方式。这里简要介绍VMD分解。

     Konstantin等人在2014年提出了一个完全非递归的变分模态分解(VMD)它可以实现分解模态的同时提取。该模型寻找一组模态和它们各自的中心频率,以便这些模态共同再现输入信号,同时每个模态在解调到基带后都是平滑的。算法的本质是将经典的维纳滤波器推广到多个自适应波段,使得其具有坚实的理论基础,并且容易理解。采用交替方向乘子法对变分模型进行有效优化,使得模型对采样噪声的鲁棒性更强。

VMD分解的具体过程可以理解为变分问题的最优解,可以相应转化为变分问题的构造和求解。

 

 

浅谈VMD---变分模态分解(变分模态分解gnss)

以上就是VMD(变分模态分解)的理论部分,大家不一定全弄明白,因为本人看了原文,也不能完全弄懂里面的数学关系。大体知道分解的过程包含哪几个步骤即可,知网上面关于这类分解的文章也很多,大家可以参考浏览学习下。

下面直接上代码。

function [u, u_hat, omega] = VMD(signal, alpha, tau, K, DC, init, tol)% Variational Mode Decomposition% Authors: Konstantin Dragomiretskiy and Dominique Zosso% zosso@math.ucla.edu --- http://www.math.ucla.edu/~zosso% Initial release 2013-12-12 (c) 2013%% Input and Parameters:% ---------------------% signal - the time domain signal (1D) to be decomposed% alpha - the balancing parameter of the data-fidelity constraint% tau - time-step of the dual ascent ( pick 0 for noise-slack )% K - the number of modes to be recovered% DC - true if the first mode is put and kept at DC (0-freq)% init - 0 = all omegas start at 0% 1 = all omegas start uniformly distributed% 2 = all omegas initialized randomly% tol - tolerance of convergence criterion; typically around 1e-6%% Output:% -------% u - the collection of decomposed modes% u_hat - spectra of the modes% omega - estimated mode center-frequencies%% When using this code, please do cite our paper:% -----------------------------------------------% K. Dragomiretskiy, D. Zosso, Variational Mode Decomposition, IEEE Trans.% on Signal Processing (in press)% please check here for update reference: % http://dx.doi.org/10.1109/TSP.2013.2288675%---------- Preparations% Period and sampling frequency of input signalsave_T = length(signal);fs = 1/save_T;% extend the signal by mirroringT = save_T;f_mirror(1:T/2) = signal(T/2:-1:1);f_mirror(T/2+1:3*T/2) = signal;f_mirror(3*T/2+1:2*T) = signal(T:-1:T/2+1);f = f_mirror;% Time Domain 0 to T (of mirrored signal)T = length(f);t = (1:T)/T;% Spectral Domain discretizationfreqs = t-0.5-1/T;% Maximum number of iterations (if not converged yet, then it won't anyway)N = 500;% For future generalizations: individual alpha for each modeAlpha = alpha*ones(1,K);% Construct and center f_hatf_hat = fftshift((fft(f)));f_hat_plus = f_hat;f_hat_plus(1:T/2) = 0;% matrix keeping track of every iterant // could be discarded for memu_hat_plus = zeros(N, length(freqs), K);% Initialization of omega_komega_plus = zeros(N, K);switch init case 1 for i = 1:K omega_plus(1,i) = (0.5/K)*(i-1); end case 2 omega_plus(1,:) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,K))); otherwise omega_plus(1,:) = 0;end% if DC mode imposed, set its omega to 0if DC omega_plus(1,1) = 0;end% start with empty dual variableslambda_hat = zeros(N, length(freqs));% other initsuDiff = tol+eps; % update stepn = 1; % loop countersum_uk = 0; % accumulator% ----------- Main loop for iterative updateswhile ( uDiff > tol && n < N ) % not converged and below iterations limit % update first mode accumulator k = 1; sum_uk = u_hat_plus(n,:,K) + sum_uk - u_hat_plus(n,:,1); % update spectrum of first mode through Wiener filter of residuals u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2); % update first omega if not held at 0 if ~DC omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2); end % update of any other mode for k=2:K % accumulator sum_uk = u_hat_plus(n+1,:,k-1) + sum_uk - u_hat_plus(n,:,k); % mode spectrum u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2); % center frequencies omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2); end % Dual ascent lambda_hat(n+1,:) = lambda_hat(n,:) + tau*(sum(u_hat_plus(n+1,:,:),3) - f_hat_plus); % loop counter n = n+1; % converged yet? uDiff = eps; for i=1:K uDiff = uDiff + 1/T*(u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i))*conj((u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i)))'; end uDiff = abs(uDiff);end%------ Postprocessing and cleanup% discard empty space if converged earlyN = min(N,n);omega = omega_plus(1:N,:);% Signal reconstructionu_hat = zeros(T, K);u_hat((T/2+1):T,:) = squeeze(u_hat_plus(N,(T/2+1):T,:));u_hat((T/2+1):-1:2,:) = squeeze(conj(u_hat_plus(N,(T/2+1):T,:)));u_hat(1,:) = conj(u_hat(end,:));u = zeros(K,length(t));for k = 1:K u(k,:)=real(ifft(ifftshift(u_hat(:,k))));end% remove mirror partu = u(:,T/4+1:3*T/4);% recompute spectrumclear u_hat;for k = 1:K u_hat(:,k)=fftshift(fft(u(k,:)))';endend

代码很长,尽量看,能看懂多少看懂多少。这里不再讲解,因为这里都是对数学原理的复现,如果要弄懂原理,建议比照原文和代码相结合,逐行去看。如果只是利用这种分解方式,关心得出的结果,那么就没有必要大费周章了。

function [u, u_hat, omega] = VMD(signal, alpha, tau, K, DC, init, tol)

函数的输入输出,这里要解释一下。

函数的输入部分:signal代表输入信号,alpha表示数据保真度约束的平衡参数  ,tau表示时间步长,K表示分解层数,DC表示如果将第一模式置于DC(0频率),则为true。  init表示信号的初始化,tol表示收敛容错准则。通常除了K,也就是分解模态数之外,其他参数都有相应的经验值。绝大部分文献对VMD的探索也是对分解模态数的确定,顶多再加上tau的讨论。(博主后面的文章中也会进行相应的讨论。)

函数的输出部分:u表示分解模式的集合,u_hat表示模式的光谱范围,omega 表示估计模态的中心频率。

下面是调用VMD分解的主程序。主要步骤就是输入信号值,确定VMD的分解参数,画图。

ticclcclear allload('IMF1_7.mat')x=IMF1_7;t=1:length(IMF1_7);%--------- 对于VMD参数进行设置---------------alpha = 2000; % moderate bandwidth constraint:适度的带宽约束/惩罚因子tau = 0.0244; % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)K = 7; % modes:分解的模态数DC = 0; % no DC part imposed:无直流部分init = 1; % initialize omegas uniformly :omegas的均匀初始化tol = 1e-6 ; %--------------- Run actual VMD code:数据进行vmd分解---------------------------[u, u_hat, omega] = VMD(x, alpha, tau, K, DC, init, tol);figure;imfn=u;n=size(imfn,1); %size(X,1),返回矩阵X的行数;size(X,2),返回矩阵X的列数;N=size(X,2),就是把矩阵X的列数赋值给Nfor n1=1:n subplot(n,1,n1); plot(t,u(n1,:));%输出IMF分量,a(:,n)则表示矩阵a的第n列元素,u(n1,:)表示矩阵u的n1行元素 ylabel(['IMF' ,int2str(n1)],'fontsize',11);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名end xlabel('样本序列','fontsize',14,'fontname','宋体');%时间\itt/s toc;

下图记为分解的结果。

 以上就是对VMD分解的简单描述,下面的博文中将探讨如何对分解层数进行相应固定。

本文链接地址:https://www.jiuchutong.com/zhishi/288805.html 转载请保留说明!

上一篇:武侯祠内红墙和竹林掩映下的小巷,中国成都 (© Eastimages/Getty Images)(武侯祠红墙在哪个门)

下一篇:阿尔伯塔的日出,加拿大 (© Ambre Haller/Moment/Getty Images)(我想看阿尔伯塔)

  • 进项税额转出的几种情况会计分录
  • 旧设备出口增值税处理
  • 个人转让房产两年内全额计税是什么意思
  • 公司货款退款怎么写
  • 价税分离合同印花税的计税依据怎么算
  • 注销实收资本账务处理
  • 境外人员为境内企业提供劳务如何缴税
  • 外资企业订单外放,员工待岗合法吗
  • 公司收承兑贴现的会计分录
  • 五险一金可以在手机上交吗
  • 多扣了离职人员的钱
  • 追加的固定资产当月计提折旧吗
  • 政府发的补助金用不用交税
  • 事业单位职工福利费范围有哪些
  • 收取质保金会计处理
  • 个体户税务登记怎么注销
  • 交强险和车船税必须一起交吗
  • 公司个税申报是什么意思
  • 电子税务局里的利润表,本月金额是填累计数吗
  • 债券折价摊销属于借款费用吗
  • 电子普通发票如何打印
  • 哪些科目适用于借方多栏式
  • 模具费属于什么费用
  • 购买员工宿舍床上用品怎么入账
  • 资产负债表期初和期末指的是什么
  • 小规模纳税人没有进项税
  • 分包方可以简易计税吗
  • 国家规定不计入社保基数
  • 房地产行业预售制度
  • laravel多条件查询
  • 表格uplook
  • php7.2编译安装
  • 公司向股东借的钱怎么还
  • 企业所得税年报截止日期2023
  • php读取文件内容的方法和函数
  • 以固定资产抵账什么意思
  • react避免子组件更新
  • 汇兑损益是资产类科目
  • Python数学建模三剑客
  • 法人如何提取公积金余额
  • 织梦怎么样
  • dedecms建站
  • 个税 全年累计
  • 未确认融资费用怎么算
  • 免税农产品发票怎么做账
  • 房产税城镇土地使用税申报期限
  • 疫情期间增值税减免政策截止时间
  • 金蝶利息收入的正确分录
  • 小规模企业房产税税率是多少
  • 应付票据转应付账款分录
  • 建筑企业包工包料业务的发票开具和涉税处理
  • 有留抵税额可以红冲吗
  • 固定资产折旧完了还算固定资产吗
  • 小企业会计准则适用于哪些企业
  • 总账和明细账的保管期限
  • MySQL中KEY、PRIMARY KEY、UNIQUE KEY、INDEX 的区别
  • 向sql server数据库中导入
  • 任务管理器已被管理员禁用怎么办
  • win10电脑系统配置
  • windows xp系
  • win10预览版和正式版区别
  • win8图片查看器无法打开图片内存不足
  • 磁盘分区右键是灰色的
  • jquery layout 布局
  • opengl纹理错误变成条纹
  • javascript相对路径
  • javascript教程chm
  • mod兼容性
  • 使用jquery
  • jquery类型转换
  • linux命令行怎么用
  • android 实例
  • 封装好的中药能带上飞机吗
  • javascript教程代码
  • jquery文档处理有哪些
  • python自带的gui
  • 江西省国家税务局李德平
  • 认缴股权是什么意思
  • 官方客服热线人工台电话
  • 财税65号第一条
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设