位置: IT常识 - 正文

GWO灰狼优化算法综述(Grey Wolf Optimization)(灰狼算法的改进)

编辑:rootadmin
GWO灰狼优化算法综述(Grey Wolf Optimization)

推荐整理分享GWO灰狼优化算法综述(Grey Wolf Optimization)(灰狼算法的改进),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:郊狼优化算法,鲸鱼优化算法和灰狼优化算法,灰狼优化算法和遗传算法,基于灰狼优化算法的改进研究及其应用,灰狼优化算法和遗传算法,gwo灰狼优化算法发展历史,灰狼优化算法和遗传算法,基于灰狼优化算法的改进研究及其应用,内容如对您有帮助,希望把文章链接给更多的朋友!

       GWO通过模拟灰狼群体捕食行为,基于狼群群体协作的机制来达到优化的目的。

       GWO算法具有结构简单、需要调节的参数少、容易实现等特点,其中存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部寻优与全局搜索之间实现平衡,因此在对问题的求解精度和收敛速度方面都有良好的性能。

1. 灰狼优化算法原理

        第一层:层狼群。种群中的领导者,负责带领整个狼群狩猎猎物,即优化算法中的最优解。 

        第二层:层狼群。负责协助 层狼群,即优化算法中的次优解。

        第三层:层狼群。听从和的命令和决策,负责侦查、放哨等。适应度差的 和 会降为。

        第四层:层狼群。它们环绕、或进行位置更新。

        灰狼的狩猎过程包含如下:①包围、跟踪猎物②追捕、骚扰猎物③攻击猎物。

2. 数学模型建立

        为了对 GWO中灰狼的社会等级进行数学建模,将前3匹最好的狼(最优解)分别定义为α,β和δ,它们指导其他狼向着目标搜索。其余的狼 (候选解)被定义为 ω,它们围绕α,β或δ来更新位置。

2.1 包围猎物

        在 GWO 中,灰狼在狩猎过程中利用以下位置更新公式实现对猎物的包围 :

 

        式(1)为灰狼和猎物之间的距离,式(2)是灰狼的位置更新公式,和分别是猎物的位置向量和灰狼的位置向量,t为当前迭代次数。和为确定的系数,其计算公式分别为:

        其中,,是两个一维分量取值在[0,1]内的随机数向量,用于模拟灰狼对猎物的攻击行为,它的取值受到的影响。收敛因子 是一个平衡GWO 勘探与开发能力的关键参数。的取值随着迭代次数的增大从 2 到 0 线性递减。

2.2 追捕猎物GWO灰狼优化算法综述(Grey Wolf Optimization)(灰狼算法的改进)

        在自然界中,虽然狩猎过程通常由头狼 α 狼引导,其它等级的狼配合对猎物进行包围、追捕和攻击,但在演化计算过程中,猎物(最优解)位置是未知的,因此在 GWO 中我们认为最优的灰狼为α ,次优的灰狼为 β ,第三优的灰狼为 δ ,其余的灰狼是 ω,根据 α (潜在最优解)、β  和 δ 对猎物的位置有更多知识的这一特性建立模型,迭代过程中采用 α 、β 和 δ 来指导 ω 的移动,从而实现全局优化。利用α 、β  和 δ 的位置、、,使用下述方程更新所有灰狼的位置:

        分别表示灰狼个体距离  层狼群、 层狼群、层狼群的距离。

       X1、X2、X3分别表示受 层狼群、 层狼群、层狼群影响, 灰狼个体需要调整的位置。

这里取平均值,即

         灰狼的位置更新方式可以用下图表示。

2.3 攻击猎物

        在下面的公式中,t 表示当前迭代次数,T 为设定的最大迭代次数。当 a的值从 2 递减至 0时,其对应的 A 的值也在区间[-a, a]变化: a 的取值越大则会使灰狼远离猎物,希望找到一个更适合的猎物,因而促使狼群进行全局搜索(|𝐴| > 1),若 a 的取值越小则会使灰狼靠近猎物,促使狼群进行局部搜索(|𝐴| < 1)。 

3. Matlab算法实现

 GWO灰狼算法的Matlab代码如下:

%pop——种群数量%dim——问题维度%ub——变量上界,[1,dim]矩阵%lb——变量下界,[1,dim]矩阵%fobj——适应度函数(指针)%MaxIter——最大迭代次数%Best_Pos——x的最佳值%Best_Score——最优适应度值clc;clear all;close all;pop=50;dim=2;ub=[10,10];lb=[-10,-10];MaxIter=100;fobj=@(x)fitness(x);%设置适应度函数[Best_Pos,Best_Score,IterCurve]=GWO(pop,dim,ub,lb,fobj,MaxIter);%…………………………………………绘图…………………………………………figure(1);plot(IterCurve,'r-','linewidth',2);grid on;title('灰狼迭代曲线');xlabel('迭代次数');ylabel('适应度值');%…………………………………… 结果显示……………………………………disp(['求解得到的x1,x2是:',num2str(Best_Pos(1)),' ',num2str(Best_Pos(2))]);disp(['最优解对应的函数:',num2str(Best_Score)]);%种群初始化函数function x=initialization(pop,ub,lb,dim)for i=1:pop for j=1:dim x(i,j)=(ub(j)-lb(j))*rand()+lb(j); endendend%狼群越界调整函数function x=BoundrayCheck(x,ub,lb,dim)for i=1:size(x,1) for j=1:dim if x(i,j)>ub(j) x(i,j)=ub(j); end if x(i,j)<lb(j) x(i,j)=lb(j); end endendend%适应度函数,可根据自身需要调整function [Fitness]=fitness(x) Fitness=sum(x.^2);end%…………………………………………灰狼算法主体………………………………………function [Best_Pos,Best_Score,IterCurve]=GWO(pop,dim,ub,lb,fobj,MaxIter)Alpha_Pos=zeros(1,dim);%初始化Alpha狼群Alpha_Score=inf;Beta_Pos=zeros(1,dim);%初始化Beta狼群Beta_Score=inf;Delta_Pos=zeros(1,dim);%初始化化Delta狼群Delta_Score=inf;x=initialization(pop,ub,lb,dim);%初始化种群Fitness=zeros(1,pop);%初始化适应度函数for i=1:pop Fitness(i)=fobj(x(i,:));end[SortFitness,IndexSort]=sort(Fitness);Alpha_Pos=x(IndexSort(1),:);Alpha_Score=SortFitness(1);Beta_Pos=x(IndexSort(2),:);Beta_Score=SortFitness(2);Delta_Pos=x(IndexSort(3),:);Delta_Score=SortFitness(3);Group_Best_Pos=Alpha_Pos;Group_Best_Score=Alpha_Score;for t=1:MaxIter a=2-t*((2)/MaxIter);%线性调整a的值 for i=1:pop for j=1:dim %根据Alpha狼群更新位置X1 r1=rand; r2=rand; A1=2*a*r1-a;%计算A1 C1=2*r2;%计算C1 D_Alpha=abs(C1*Alpha_Pos(j)-x(i,j));%计算种群中其它狼只与Alpha狼群的距离 X1=Alpha_Pos(j)-A1*D_Alpha;%更新X1 %根据Beta狼群更新位置X2 r1=rand; r2=rand; A2=2*a*r1-a;%计算A2 C2=2*r2;%计算C2 D_Beta=abs(C2*Beta_Pos(j)-x(i,j));%计算种群中其它狼只与Beta狼群的距离 X2=Beta_Pos(j)-A2*D_Beta;%更新X2 %根据Delta狼群更新位置X3 r1=rand; r2=rand; A3=2*a*r1-a; C3=2*r2; D_Delta=abs(C3*Delta_Pos(j)-x(i,j));%计算种群中其它狼只与BDelta狼群的距离 X3=Delta_Pos(j)-A3*D_Delta;%更新X3 x(i,j)=(X1+X2+X3)/3;%更新后的狼只位置 end end x=BoundrayCheck(x,ub,lb,dim);%狼只越界调整 for i=1:pop Fitness(i)=fobj(x(i,:)); if Fitness(i)<Alpha_Score%替换Aplha狼 Alpha_Score=Fitness(i); Alpha_Pos=x(i,:); end if Fitness(i)>Alpha_Score&&Fitness(i)<Beta_Score%替换Beta狼 Beta_Score=Fitness(i); Beta_Pos=x(i,:); end if Fitness(i)>Alpha_Score&&Fitness(i)>Beta_Score&&Fitness(i)<Delta_Score%替换Delta狼 Delta_Score=Fitness(i); Delta_Pos=x(i,:); end end Group_Best_Pos=Alpha_Pos; Group_Best_Score=Alpha_Score; IterCurve(t)=Group_Best_Score;end Best_Pos=Group_Best_Pos; Best_Score=Group_Best_Score;end4. GWO算法的优化过程

        GWO算法的优化从随机创建 一个灰狼种群(候选方案)开始。在迭代过程中,α,β和δ狼估计猎物的可能位置(最优解)。灰狼根据它们与猎物的距离更新其位置。为了搜索过程中的勘探和开发,参数a应该从2递减到0。如果||>1,候选解远离猎物;如果||<1,候选解逼近猎物。GWO算法的流程图如下图所示。

         目前对于GWO算法的改进很多,可以参考以下的文献

参考文献

        1.张晓凤,王秀英.灰狼优化算法研究综述[M].青岛科技大学

        2.张森.灰狼优化算法研究及应用[M],广西民族大学

本文链接地址:https://www.jiuchutong.com/zhishi/289603.html 转载请保留说明!

上一篇:微前端架构-qiankun在vue3的应用(微前端架构实现)

下一篇:Mont Choisy Beach, Mauritius (© Robert Harding World Imagery/Offset by Shutterstock)

  • qq聊天记录恢复(qq聊天记录恢复大师)

    qq聊天记录恢复(qq聊天记录恢复大师)

  • oppok9s怎么截屏(oppok9怎么截短图?)

    oppok9s怎么截屏(oppok9怎么截短图?)

  • 如何关闭微博自动刷新(如何关闭微博自动播放下一个视频)

    如何关闭微博自动刷新(如何关闭微博自动播放下一个视频)

  • 抖音粉丝牌怎么升级(抖音粉丝牌怎么在别的房间不显示)

    抖音粉丝牌怎么升级(抖音粉丝牌怎么在别的房间不显示)

  • app store无法处理您的请求(app store无法处理你的购买)

    app store无法处理您的请求(app store无法处理你的购买)

  • 做表格怎么套公式求和(做表格怎么套公式)

    做表格怎么套公式求和(做表格怎么套公式)

  • oppor17怎么恢复出厂系统(oppor17怎么恢复微信聊天记录)

    oppor17怎么恢复出厂系统(oppor17怎么恢复微信聊天记录)

  • qq怎么看见全部访客(怎么看qq全部好友)

    qq怎么看见全部访客(怎么看qq全部好友)

  • 我的抖音为什么看不到别人在线(我的抖音为什么没有一键成片)

    我的抖音为什么看不到别人在线(我的抖音为什么没有一键成片)

  • 安装微信显示应用未安装怎么回事(安装微信显示应用未安装)

    安装微信显示应用未安装怎么回事(安装微信显示应用未安装)

  • 苹果提醒事项前面有个圆圈(苹果提醒事项前面的点)

    苹果提醒事项前面有个圆圈(苹果提醒事项前面的点)

  • 微信号封了是什么样的显示(微信号封了是什么原因怎么解封)

    微信号封了是什么样的显示(微信号封了是什么原因怎么解封)

  • 只读光盘cdrom属于什么(只读光盘简称)

    只读光盘cdrom属于什么(只读光盘简称)

  • ppt母版怎么应用到全部页(ppt母版怎么应用到不同页面)

    ppt母版怎么应用到全部页(ppt母版怎么应用到不同页面)

  • 手机wps怎么排序名次(手机wps如何排序)

    手机wps怎么排序名次(手机wps如何排序)

  • ppt有哪些用途(ppt的作用包括什么)

    ppt有哪些用途(ppt的作用包括什么)

  • 小米5呼叫转移怎么解除(小米呼叫转移怎么取消?)

    小米5呼叫转移怎么解除(小米呼叫转移怎么取消?)

  • 苹果xr的录音功能在哪里(xr手机录音在哪里)

    苹果xr的录音功能在哪里(xr手机录音在哪里)

  • 手机版怎么查看qq年龄(手机版怎么查看QQ邮箱)

    手机版怎么查看qq年龄(手机版怎么查看QQ邮箱)

  • grid 栅格/网格布局学习笔记(栅格布局实现)

    grid 栅格/网格布局学习笔记(栅格布局实现)

  • vite+vue3搭建的工程热更新失效问题(vue3.0 vite)

    vite+vue3搭建的工程热更新失效问题(vue3.0 vite)

  • 电脑学习网2022年苹果M1笔记本MACOS最强的FileZilla服务器FTP工具免费下载安装(有没有网上学电脑的)

    电脑学习网2022年苹果M1笔记本MACOS最强的FileZilla服务器FTP工具免费下载安装(有没有网上学电脑的)

  • 你必须了解的最简单的帝国CMS网站转移方法详解(你必须了解的最大的问题)

    你必须了解的最简单的帝国CMS网站转移方法详解(你必须了解的最大的问题)

  • 出口退税认定如何办理
  • 出口支付给境外的佣金
  • 主营业务怎么计算
  • 小规模纳税人个税是月报还是季报
  • 发票已抵扣但对方要红冲后续原发票要拿回来吗
  • 小规模纳税人不动产租赁税率
  • 子公司利润母公司要交税吗?
  • 什么情况下视同销售
  • 善意取得增值税专用发票企业所得税处理
  • 现代服务业加计抵减政策适用范围
  • 净资产的核算方法
  • 1元换购怎么做账
  • 工程用油计入什么科目
  • 某企业原材料采用实际成本核算,2019年6月
  • 未安装使用
  • 个体户国税定额开发票60000元地税要交多少钱?
  • 企业拆迁补偿款要交哪些税
  • 新公司领取营业执照后的流程
  • 发票专用章盖错地方了可以用吗
  • 工程物资期末余额的填列方法
  • 建安企业增值税税率是多少
  • 母公司对子公司的控股比例
  • 个体户怎
  • 辅助生产费用的核算
  • 消费税的附加税和增值税的附加税
  • 4S店装修改造费帐务处理?
  • 怎么清除更新记录
  • 用现金换承兑怎么做账
  • 长期资本负债率怎么计算公式
  • 公司自有房屋出租 没有从租计征房产税
  • 在电脑中设置一键换机
  • 公司买了一辆二手汽车,怎么入账
  • 多收不用退的货物怎么办
  • 政府补助开票怎么申报增值税
  • 为员工租房租金怎么入账
  • 怎么登记总分类账簿
  • 交易性金融资产属于什么科目
  • 应扣未扣税款对纳税人的处理
  • 贝特阿斯品牌介绍
  • 盆栽月季花怎么修剪图解
  • CI(Codeigniter)的Setting增强配置类实例
  • 只有收据没有发票怎么报销
  • 净资产收益率的概念
  • 水费里的代收费用是什么意思
  • node.js什么意思
  • CSS渐变背景应用
  • matching path
  • vm网络不可达
  • 工会筹备金不缴可以吗
  • python poetry如何创建项目
  • python最小正整数
  • 个体工商户可以抵扣进项吗
  • 固定电话机用装电池吗
  • 单位出租不动产,按照5%的征收率计算应纳税额
  • 公司注销清算时个人股东如何计算个人所得税
  • 什么是受托支付和非受托支付
  • 应收款项减值讲解视频
  • 工伤七至十级有伤残津贴吗
  • 房地产开发企业资质管理规定
  • 开始建账需要哪些数据
  • 如何给初建单位发邮件
  • sql语句如何将一列数据值相加
  • Mac下mysql 5.7.13 安装配置方法图文教程
  • ubuntu 挂载iso文件
  • bios详细解释
  • Win7中Remote Procedure Call(RPC)服务能关闭吗
  • linux防止攻击
  • linux系统查看磁盘io
  • win7开始菜单在哪个文件夹
  • win7笔记本设置合上盖子不休眠
  • 电源管理器在哪
  • cocos引擎教程
  • javascript内置对象应用团购
  • mongorestore报错
  • python中如何获取列表中位数
  • jquery 打印方法
  • 基于javascript的毕业设计选题
  • js日期格式转换
  • 深圳市财政上交广东省吗
  • 收购烟叶支付的价外补贴怎么处理
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设