位置: IT常识 - 正文

GWO灰狼优化算法综述(Grey Wolf Optimization)(灰狼算法的改进)

编辑:rootadmin
GWO灰狼优化算法综述(Grey Wolf Optimization)

推荐整理分享GWO灰狼优化算法综述(Grey Wolf Optimization)(灰狼算法的改进),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:郊狼优化算法,鲸鱼优化算法和灰狼优化算法,灰狼优化算法和遗传算法,基于灰狼优化算法的改进研究及其应用,灰狼优化算法和遗传算法,gwo灰狼优化算法发展历史,灰狼优化算法和遗传算法,基于灰狼优化算法的改进研究及其应用,内容如对您有帮助,希望把文章链接给更多的朋友!

       GWO通过模拟灰狼群体捕食行为,基于狼群群体协作的机制来达到优化的目的。

       GWO算法具有结构简单、需要调节的参数少、容易实现等特点,其中存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部寻优与全局搜索之间实现平衡,因此在对问题的求解精度和收敛速度方面都有良好的性能。

1. 灰狼优化算法原理

        第一层:层狼群。种群中的领导者,负责带领整个狼群狩猎猎物,即优化算法中的最优解。 

        第二层:层狼群。负责协助 层狼群,即优化算法中的次优解。

        第三层:层狼群。听从和的命令和决策,负责侦查、放哨等。适应度差的 和 会降为。

        第四层:层狼群。它们环绕、或进行位置更新。

        灰狼的狩猎过程包含如下:①包围、跟踪猎物②追捕、骚扰猎物③攻击猎物。

2. 数学模型建立

        为了对 GWO中灰狼的社会等级进行数学建模,将前3匹最好的狼(最优解)分别定义为α,β和δ,它们指导其他狼向着目标搜索。其余的狼 (候选解)被定义为 ω,它们围绕α,β或δ来更新位置。

2.1 包围猎物

        在 GWO 中,灰狼在狩猎过程中利用以下位置更新公式实现对猎物的包围 :

 

        式(1)为灰狼和猎物之间的距离,式(2)是灰狼的位置更新公式,和分别是猎物的位置向量和灰狼的位置向量,t为当前迭代次数。和为确定的系数,其计算公式分别为:

        其中,,是两个一维分量取值在[0,1]内的随机数向量,用于模拟灰狼对猎物的攻击行为,它的取值受到的影响。收敛因子 是一个平衡GWO 勘探与开发能力的关键参数。的取值随着迭代次数的增大从 2 到 0 线性递减。

2.2 追捕猎物GWO灰狼优化算法综述(Grey Wolf Optimization)(灰狼算法的改进)

        在自然界中,虽然狩猎过程通常由头狼 α 狼引导,其它等级的狼配合对猎物进行包围、追捕和攻击,但在演化计算过程中,猎物(最优解)位置是未知的,因此在 GWO 中我们认为最优的灰狼为α ,次优的灰狼为 β ,第三优的灰狼为 δ ,其余的灰狼是 ω,根据 α (潜在最优解)、β  和 δ 对猎物的位置有更多知识的这一特性建立模型,迭代过程中采用 α 、β 和 δ 来指导 ω 的移动,从而实现全局优化。利用α 、β  和 δ 的位置、、,使用下述方程更新所有灰狼的位置:

        分别表示灰狼个体距离  层狼群、 层狼群、层狼群的距离。

       X1、X2、X3分别表示受 层狼群、 层狼群、层狼群影响, 灰狼个体需要调整的位置。

这里取平均值,即

         灰狼的位置更新方式可以用下图表示。

2.3 攻击猎物

        在下面的公式中,t 表示当前迭代次数,T 为设定的最大迭代次数。当 a的值从 2 递减至 0时,其对应的 A 的值也在区间[-a, a]变化: a 的取值越大则会使灰狼远离猎物,希望找到一个更适合的猎物,因而促使狼群进行全局搜索(|𝐴| > 1),若 a 的取值越小则会使灰狼靠近猎物,促使狼群进行局部搜索(|𝐴| < 1)。 

3. Matlab算法实现

 GWO灰狼算法的Matlab代码如下:

%pop——种群数量%dim——问题维度%ub——变量上界,[1,dim]矩阵%lb——变量下界,[1,dim]矩阵%fobj——适应度函数(指针)%MaxIter——最大迭代次数%Best_Pos——x的最佳值%Best_Score——最优适应度值clc;clear all;close all;pop=50;dim=2;ub=[10,10];lb=[-10,-10];MaxIter=100;fobj=@(x)fitness(x);%设置适应度函数[Best_Pos,Best_Score,IterCurve]=GWO(pop,dim,ub,lb,fobj,MaxIter);%…………………………………………绘图…………………………………………figure(1);plot(IterCurve,'r-','linewidth',2);grid on;title('灰狼迭代曲线');xlabel('迭代次数');ylabel('适应度值');%…………………………………… 结果显示……………………………………disp(['求解得到的x1,x2是:',num2str(Best_Pos(1)),' ',num2str(Best_Pos(2))]);disp(['最优解对应的函数:',num2str(Best_Score)]);%种群初始化函数function x=initialization(pop,ub,lb,dim)for i=1:pop for j=1:dim x(i,j)=(ub(j)-lb(j))*rand()+lb(j); endendend%狼群越界调整函数function x=BoundrayCheck(x,ub,lb,dim)for i=1:size(x,1) for j=1:dim if x(i,j)>ub(j) x(i,j)=ub(j); end if x(i,j)<lb(j) x(i,j)=lb(j); end endendend%适应度函数,可根据自身需要调整function [Fitness]=fitness(x) Fitness=sum(x.^2);end%…………………………………………灰狼算法主体………………………………………function [Best_Pos,Best_Score,IterCurve]=GWO(pop,dim,ub,lb,fobj,MaxIter)Alpha_Pos=zeros(1,dim);%初始化Alpha狼群Alpha_Score=inf;Beta_Pos=zeros(1,dim);%初始化Beta狼群Beta_Score=inf;Delta_Pos=zeros(1,dim);%初始化化Delta狼群Delta_Score=inf;x=initialization(pop,ub,lb,dim);%初始化种群Fitness=zeros(1,pop);%初始化适应度函数for i=1:pop Fitness(i)=fobj(x(i,:));end[SortFitness,IndexSort]=sort(Fitness);Alpha_Pos=x(IndexSort(1),:);Alpha_Score=SortFitness(1);Beta_Pos=x(IndexSort(2),:);Beta_Score=SortFitness(2);Delta_Pos=x(IndexSort(3),:);Delta_Score=SortFitness(3);Group_Best_Pos=Alpha_Pos;Group_Best_Score=Alpha_Score;for t=1:MaxIter a=2-t*((2)/MaxIter);%线性调整a的值 for i=1:pop for j=1:dim %根据Alpha狼群更新位置X1 r1=rand; r2=rand; A1=2*a*r1-a;%计算A1 C1=2*r2;%计算C1 D_Alpha=abs(C1*Alpha_Pos(j)-x(i,j));%计算种群中其它狼只与Alpha狼群的距离 X1=Alpha_Pos(j)-A1*D_Alpha;%更新X1 %根据Beta狼群更新位置X2 r1=rand; r2=rand; A2=2*a*r1-a;%计算A2 C2=2*r2;%计算C2 D_Beta=abs(C2*Beta_Pos(j)-x(i,j));%计算种群中其它狼只与Beta狼群的距离 X2=Beta_Pos(j)-A2*D_Beta;%更新X2 %根据Delta狼群更新位置X3 r1=rand; r2=rand; A3=2*a*r1-a; C3=2*r2; D_Delta=abs(C3*Delta_Pos(j)-x(i,j));%计算种群中其它狼只与BDelta狼群的距离 X3=Delta_Pos(j)-A3*D_Delta;%更新X3 x(i,j)=(X1+X2+X3)/3;%更新后的狼只位置 end end x=BoundrayCheck(x,ub,lb,dim);%狼只越界调整 for i=1:pop Fitness(i)=fobj(x(i,:)); if Fitness(i)<Alpha_Score%替换Aplha狼 Alpha_Score=Fitness(i); Alpha_Pos=x(i,:); end if Fitness(i)>Alpha_Score&&Fitness(i)<Beta_Score%替换Beta狼 Beta_Score=Fitness(i); Beta_Pos=x(i,:); end if Fitness(i)>Alpha_Score&&Fitness(i)>Beta_Score&&Fitness(i)<Delta_Score%替换Delta狼 Delta_Score=Fitness(i); Delta_Pos=x(i,:); end end Group_Best_Pos=Alpha_Pos; Group_Best_Score=Alpha_Score; IterCurve(t)=Group_Best_Score;end Best_Pos=Group_Best_Pos; Best_Score=Group_Best_Score;end4. GWO算法的优化过程

        GWO算法的优化从随机创建 一个灰狼种群(候选方案)开始。在迭代过程中,α,β和δ狼估计猎物的可能位置(最优解)。灰狼根据它们与猎物的距离更新其位置。为了搜索过程中的勘探和开发,参数a应该从2递减到0。如果||>1,候选解远离猎物;如果||<1,候选解逼近猎物。GWO算法的流程图如下图所示。

         目前对于GWO算法的改进很多,可以参考以下的文献

参考文献

        1.张晓凤,王秀英.灰狼优化算法研究综述[M].青岛科技大学

        2.张森.灰狼优化算法研究及应用[M],广西民族大学

本文链接地址:https://www.jiuchutong.com/zhishi/289603.html 转载请保留说明!

上一篇:微前端架构-qiankun在vue3的应用(微前端架构实现)

下一篇:Mont Choisy Beach, Mauritius (© Robert Harding World Imagery/Offset by Shutterstock)

  • 美柚怎么才能清除历史数据(美柚怎么清空所有记录)

    美柚怎么才能清除历史数据(美柚怎么清空所有记录)

  • 荣耀v10指纹设置不见了(荣耀v10指纹识别在哪)

    荣耀v10指纹设置不见了(荣耀v10指纹识别在哪)

  • 6s要不要升级13

    6s要不要升级13

  • 宽带突然不能用了是什么原因(宽带突然不能用了怎么回事移动)

    宽带突然不能用了是什么原因(宽带突然不能用了怎么回事移动)

  • 微信注销成功显示什么(微信注销成功显示什么状态)

    微信注销成功显示什么(微信注销成功显示什么状态)

  • 芯片由什么物质组成(芯片的物质)

    芯片由什么物质组成(芯片的物质)

  • 小米手机恢复出厂设置照片还在吗(小米手机恢复出厂设置后小米账号还会有吗)

    小米手机恢复出厂设置照片还在吗(小米手机恢复出厂设置后小米账号还会有吗)

  • 华为nova7视频防抖吗(华为nova7pro防窥屏)

    华为nova7视频防抖吗(华为nova7pro防窥屏)

  • 华为子路由器一直闪(华为子路由器一直升级不成功)

    华为子路由器一直闪(华为子路由器一直升级不成功)

  • 华为荣耀30啥时候上市(华为荣耀啥时候出的)

    华为荣耀30啥时候上市(华为荣耀啥时候出的)

  • 7p支持ios13吗(苹果7p可以用ios14吗)

    7p支持ios13吗(苹果7p可以用ios14吗)

  • ipadair3支持30w快充吗(ipadair3可以用30w快充吗)

    ipadair3支持30w快充吗(ipadair3可以用30w快充吗)

  • 什么叫云服务(什么叫云服务端)

    什么叫云服务(什么叫云服务端)

  • usb keyboard是什么(usb keyboard function)

    usb keyboard是什么(usb keyboard function)

  • 怎么删除腾讯充值记录(怎么删除腾讯充值中心交易记录)

    怎么删除腾讯充值记录(怎么删除腾讯充值中心交易记录)

  • 钉钉快速截图快捷键(钉钉怎样截图快捷键)

    钉钉快速截图快捷键(钉钉怎样截图快捷键)

  • 拼多多下单怎么备注(拼多多下单怎么买运费险)

    拼多多下单怎么备注(拼多多下单怎么买运费险)

  • 小米4手环能测心率吗(小米4手环能测血氧)

    小米4手环能测心率吗(小米4手环能测血氧)

  • 红米k20prodc调光有用吗(红米k20dc调光怎么开)

    红米k20prodc调光有用吗(红米k20dc调光怎么开)

  • 点赞未发送是什么意思(点赞未发送是什么情况微信)

    点赞未发送是什么意思(点赞未发送是什么情况微信)

  • 讯飞输入法如何打日语(讯飞输入法如何自定义皮肤)

    讯飞输入法如何打日语(讯飞输入法如何自定义皮肤)

  • COMS密码忘记怎么办  找回COMS密码方法步骤(com2us密码找回)

    COMS密码忘记怎么办 找回COMS密码方法步骤(com2us密码找回)

  • yolov5部署+微信小程序前端展示(yolov5部署微信小程序)

    yolov5部署+微信小程序前端展示(yolov5部署微信小程序)

  • 织梦新站上线前站长必看的百度SEO网站优化教程【防黑防挂马】(织梦建站详细步骤)

    织梦新站上线前站长必看的百度SEO网站优化教程【防黑防挂马】(织梦建站详细步骤)

  • 委托加工应税消费品收回后直接销售
  • 息税前利润计算每股收益
  • 个税申报与社保申报一定是一致的么
  • 监控系统维护费计入什么科目
  • 出纳取备用金需要交税吗
  • 换公司后个税app上没有显示缴费记录
  • 住房公积金在个税中如何扣除
  • 个税全年一次性奖金单独计税
  • 政府补助的核算方法名词解释
  • 投资公司收到的发票
  • 营改增后利息收入交什么税
  • 地税评为d级纳税人是指
  • 如何界定企业所得税的不征税收入与应税收入
  • 企业计提的工资薪金支出可以在税前扣除
  • 发票跨年冲销
  • 无形资产的定义和特征
  • 营改增后增值税税率的调整
  • 上月的应付账款怎么记账
  • windows11启动卡在转圈圈
  • 生产车间的各种费用
  • 专票和普票都要交税吗
  • 客户罚款记哪个科目
  • linux配置多网卡设置
  • element ui datepicker 源码
  • 定额备用金制度
  • PHP:pg_lo_create()的用法_PostgreSQL函数
  • win10 打开远程连接
  • apkpure 安全
  • flash process
  • 企业投资入股要交企业所得税吗
  • 喝薏米红豆水最佳时间
  • es6的module模块
  • 存货什么时候计提什么时候回转
  • 企业税负率过高的坏处
  • 资产负债表中的应收账款应根据什么填列
  • 【深度学习】Pytorch实现CIFAR10图像分类任务测试集准确率达95%
  • fio命令详解
  • 企业所得税申报表资产总额怎么填
  • 企业在外地单位怎么交税
  • 月初领票是不是要等到报完税才可以领
  • 利润总额包括的内容主要有
  • case语句怎么执行
  • 外购产品用于职工福利企业所得税视作销售吗
  • 只有收据没有发票怎么入账
  • 交易性金融资产公允价值变动怎么算
  • 签订三方协议是办理实时扣税的前提,这里三方是指
  • 固定资产溢余账务处理
  • 个体户怎么能享受生育险
  • 研发费用允许加计扣除的标准
  • 银行发放执行款多久到账
  • 股权转让溢价部分会计分录
  • 企业收到政府专项奖励
  • 上年度会计凭证怎么填
  • 销售产品收到现款120元是什么制
  • 费用票成本票有哪些
  • 非营利性组织和营利性组织的区别
  • 加计抵减附加税怎么算
  • 累计折旧税率
  • 非营利医疗机构由谁批准
  • mysql性能分析语句
  • mysql sqlserver语法
  • win8的应用商店
  • windows server 2008 r2离线激活
  • 电脑连接宽带时出错怎么办
  • win7 手动输入用户名
  • win7系统注册表文件损坏无法开机怎么修复
  • macbookpro屏幕显示
  • linux下4种kill某个用户所有进程的方法
  • win8.1 无法连接到此网络
  • linux中make
  • 手机gpu过度绘制
  • jquery是基于java的吗
  • nodejs递归创建目录
  • import和export区别
  • 如何让listview提高效率
  • python中的字符串的英文
  • 福建电子发票开票流程?
  • 税务部门三化建设
  • 企业购房契税怎么入账
  • 出租场地的税费
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设