位置: IT常识 - 正文

去噪扩散概率模型(DDPM)的简单理解(去噪扩散概率模型)

编辑:rootadmin
去噪扩散概率模型(DDPM)的简单理解

推荐整理分享去噪扩散概率模型(DDPM)的简单理解(去噪扩散概率模型),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:去噪扩散概率模型应用,去噪扩散概率模型作用是什么,噪音扩散角度,扩散和噪点,去噪 算法,扩散和噪点,去噪扩散概率模型下载,去噪扩散概率模型,内容如对您有帮助,希望把文章链接给更多的朋友!

图1 DDPM 无条件控制生成的图像。 这些不是真实的人、地方、动物或物体。

前言

扩散模型最近在图像生成领域取得了巨大的成功,类似 OpenAI 的 DALL-E 2,Google 的 Imagen,以及 Stability AI 最近发行的能够达到商业级绘画目的的 Stable Diffusion 等,都是基于扩散模型来进行图像生成的。本文对知乎上各位大佬对于扩散模型(特别是 DDPM)的讲解进行了融合,带领大家深入浅出理解扩散和逆扩散过程。

数学基础先验概率和后验概率

先验概率:根据以往经验和分析得到的概率。它往往作为由因求果问题中的因出现,如q(Xt∣Xt−1)q(X_{t}|X_{t-1})q(Xt​∣Xt−1​)

后验概率:是指在得到结果的信息后重新修正的概率。是执果寻因问题中的因,如p(Xt−1∣Xt)p(X_{t-1}|X_{t})p(Xt−1​∣Xt​)

KL 散度

对于两个单一变量的高斯分布的 ppp 和 qqq 而言,它们的 KL 散度为:

KL(p,q)=logσ2σ1+σ12+(μ1−μ2)22σ22−12KL(p, q)=log\frac{\sigma_{2}}{\sigma_{1}}+\frac{\sigma_{1}^{2}+(\mu_{1}-\mu_{2})^{2}}{2\sigma_{2}^{2}}-\frac{1}{2}KL(p,q)=logσ1​σ2​​+2σ22​σ12​+(μ1​−μ2​)2​−21​

参数重整化

若希望从高斯分布 N(μ,σ2)N(\mu, \sigma^{2})N(μ,σ2) 中采样,可以先从标准分布 N(,1)N(0, 1)N(0,1) 采样出 zzz,再得到 σ∗z+μ\sigma*z+\muσ∗z+μ,这就是我们想要的采样结果。这样做的好处是将随机性转移到了 zzz 这个常量上,而 σ\sigmaσ 和 μ\muμ 则当作仿射变换网络的一部分。

模型介绍模型总览

图2 DDPM 是经过训练以逐渐去除噪声数据的参数化马尔可夫链。我们估计生成过程的参数。

去噪扩散概率模型(DDPM)的简单理解(去噪扩散概率模型)

DDPM 主要分为两个过程:

forward 加噪过程(从右往左)reverse 去噪过程(从左往右)

加噪过程是指向数据集中的真实图像逐步加入高斯噪声,而去噪过程是指对加了噪声的图片逐步去噪,从而还原出真实图像。加噪过程满足一定的数学规律,不需要学习,而去噪过程则采用神经网络模型来学习。这样一来,神经网络模型就可以从一堆杂乱无章的噪声图片中生成真实图片了。

扩散过程逐步加噪

给定初始数据分布 x∼q(x)x_{0} \sim q(x)x0​∼q(x),我们定义一个前向扩散过程(forward diffusion process):我们向数据分布中逐步添加高斯噪声,加噪过程持续 TTT 次,产生一系列带噪声的图片 x1,...,xTx_{1},...,x_{T}x1​,...,xT​。在由 xt−1x_{t-1}xt−1​ 加噪至 xtx_{t}xt​ 的过程中,噪声的标准差/方差是以一个在区间 (,1)(0, 1)(0,1) 内的固定值 βT\beta_{T}βT​ 来确定的,均值是以固定值 βT\beta_{T}βT​ 和当前时刻的图片数据 xt−1x_{t-1}xt−1​ 来确定的。以上描述的加噪过程可以写成公式:

q(x1:T∣x):=∏t=1Tq(xt∣xt−1),q(xt∣xt−1):=N(xt;1−βtxt−1,βtI)q(x_{1:T|x_{0}}):=\prod_{t=1}^{T}q(x_{t}|x_{t-1}), \quad q(x_{t}|x_{t-1}) := \mathcal N(x_{t};\sqrt{1-\beta_{t}}x_{t-1},\beta_{t}\mathbf{I})q(x1:T∣x0​​):=t=1∏T​q(xt​∣xt−1​),q(xt​∣xt−1​):=N(xt​;1−βt​​xt−1​,βt​I)

上式的意思是:由xt−1x_{t-1}xt−1​得到xtx_{t}xt​的过程,满足分布 N(xt;1−βtxt−1,βtI)\mathcal N(x_{t};\sqrt{1-\beta_{t}}x_{t-1}, \beta_{t}\mathbf{I})N(xt​;1−βt​​xt−1​,βt​I),因此噪声只由 βT\beta_{T}βT​和xt−1x_{t-1}xt−1​来确定,是一个固定值而不是一个可学习的过程。因此,只要有了 xx_{0}x0​,并且提前确定每一步的固定值β1,...,βT\beta_{1},...,\beta_{T}β1​,...,βT​,我们就可以推出任意一部的加噪数据 x1,...,xTx_{1},...,x_{T}x1​,...,xT​。值得注意的是,这里的加噪过程是一个马尔科夫链过程,即当前状态的概率只与上一时刻有关。

加噪结果

随着 ttt 的不断增大,最终原始数据 xx_{0}x0​ 会逐步失去它的特征。最终当 T→∞T\rightarrow\inftyT→∞时,xTx_{T}xT​趋近于一个各向同性的高斯分布。从视觉上看,就是将原本一张完好的照片加噪很多步后,图片几乎变成了一张完全时噪声的图片。

任意时刻 xtx_{t}xt​的计算

逐步加噪过程中,我们其实并不需要一步步地从 x,x1,...x_{0},x_{1},...x0​,x1​,... 去迭代得到 xtx_{t}xt​。事实上,我们可以直接从 xx_{0}x0​ 和固定值序列 {βT∈(,1)}t=1T\{ \beta_{T}∈(0, 1)\}_{t=1}^{T}{βT​∈(0,1)}t=1T​直接计算得到:

q(xt∣x)=N(xt;αt‾x,(1−αt‾)I)q(x_{t}|x_{0}) = \mathcal N(x_{t};\sqrt{\overline{\alpha_{t}}}x_{0}, (1-\overline{\alpha_{t}})\mathbf{I}) \\q(xt​∣x0​)=N(xt​;αt​​​x0​,(1−αt​​)I)

上式中,αt=1−βt\alpha_{t}=1-\beta_{t}αt​=1−βt​,αt‾=∏i=1Tαi\overline{\alpha_{t}}=\prod_{i=1}^T\alpha_{i}αt​​=∏i=1T​αi​,中间推导过程不再罗列。

逆扩散过程

如果我们能够将上述过程转换方法,即从q(xt−1∣xt)q(x_{t-1}|x_{t})q(xt−1​∣xt​)中采样,那么我们就可以从一个随机的高斯分布N(,I)\mathcal N(0, \mathbf{I})N(0,I)中重建出一个真实的原始样本,也就是从一个完全杂乱无章的噪声图片中得到一张真实图片。但是,由于需要从完整数据集中找到数据分布,我们没办法简单地预测q(xt−1∣xt)q(x_{t-1}|x_{t})q(xt−1​∣xt​),因此需要学习一个模型pθp_{\theta}pθ​来近似模拟这个条件概率,从而运行逆扩散过程。

pθ(x:T):=p(xT)∏t=1Tpθ(xt−1∣xt),pθ(xt−1∣xt):=N(xt−1;μθ(xt,t),∑θ(xt,t))p_{\theta}(x_{0:T}):=p(x_{T})\prod_{t=1}^{T}p_{\theta}(x_{t-1}|x_{t}), \quad p_{\theta}(x_{t-1}|x_{t}):=\mathcal N(x_{t-1};\mu_{\theta(x_{t},t),\sum_{\theta}(x_{t},t)})pθ​(x0:T​):=p(xT​)t=1∏T​pθ​(xt−1​∣xt​),pθ​(xt−1​∣xt​):=N(xt−1​;μθ(xt​,t),∑θ​(xt​,t)​)

要点分析

正向的扩散过程:

扩散过程时逐步加噪的过程扩散过程符合马尔科夫假设每一步的噪声都是高斯噪声加噪是用方差参数来控制的(预定义的超参数)正向扩散过程属于无参模型(不需要进行学习)该过程支持在任意步长采样(方便后续的训练)

逆向的扩散过程:

从高斯噪声中采样,学习一个模型估计真实的条件概率分布(从上一状态到下一状态的条件概率模型)也可以直接计算任意状态的分布,因此可以直接采样,然后和真实图像计算均方误差用一个 U-Net 结构来对 ttt 时刻的噪声进行预测逆过程的均值需要模型预测(有参),但方差采用了常数项(无参,当然有工作将其改进成有参也同样 work)伪代码

相关论文标题简称出版评语Denoising Diffusion Probabilistic ModelsDDPMNIPS 2020开山之作Denoising Diffusion Implicit ModelsDDIMICLR 2021采样提速Improved denoising diffusion probabilistic models\ICML 2021在保证高图像质量的同时提升对数似然Diffusion Models Beat GANs on Image Synthesis\NIPS 2021Diffusion Models VS. GANs(提出了带条件的扩散模型)Classifier-Free Diffusion Guidance\NIPS 2021引入等价结构替换分类器引导Hierarchical Text-Conditional Image Generation with CLIP LatentsDALL-E 2NIPS 2022OpenAI 文本生成图像Photorealistic Text-to-Image Diffusion Models with Deep Language UnderstandingImagenNIPS 2022Google 文本生成图像High-Resolution Image Synthesis with Latent Diffusion ModelsLDMCVPR 2022采样提速参考DDPM解读(一)| 数学基础,扩散与逆扩散过程和训练推理方法diffusion model最近在图像生成领域大红大紫,如何看待它的风头开始超过GAN?基于扩散模型的文本引导图像生成算法生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼生成扩散模型漫谈(二):DDPM = 自回归式VAEDiffusion Model一发力,GAN就过时了?
本文链接地址:https://www.jiuchutong.com/zhishi/289631.html 转载请保留说明!

上一篇:黑沙滩上Reynisdrangar的玄武岩,冰岛 (© Cavan Images/Getty Images)(黑沙滩是什么意思)

下一篇:Linux查看SSH服务是否开启(linux查看ssh服务开启)

  • 13点专票和13点普票的区别
  • 私企招残疾人可以辞职吗
  • 未开票收入已报税怎么办
  • 公司基本账户销户需要带什么资料
  • 应付账款不用付怎么处理
  • 购买东西进项税在借方还是贷方
  • 摊销费用怎么计提
  • 免费的产品
  • 幼儿园幼儿买花的通知
  • 特许权使用费如何确认收入
  • 股票收入要交所得税吗
  • 建筑行业增值税税率是多少
  • 促销费属于哪个税目
  • 定额发票有效期是多长时间?你知道吗?
  • 印花税减半优惠政策2019
  • 小规模纳税人怎么开增值税专用发票
  • 涂料生产企业消毒方案
  • 货代发票税率是多少
  • window休眠
  • 开机默认开启数字键
  • 平均净资产和净资产
  • 车辆折旧完了以后
  • 国有土地使用权租赁
  • ccc.exe是什么进程
  • PHP:mb_decode_mimeheader()的用法_mbstring函数
  • 房地产企业结转收入企业所得税处理
  • 返还土地出让金如何追缴的
  • 水培吊兰的养殖周期
  • 如何使用nodejs
  • 收到提供劳务的收入
  • chrome插件api
  • 失控增值税专用发票
  • 汇兑损益计算方法有哪些
  • python爬虫中数据接口的含义
  • 多交的城建税可以抵减扣除吗
  • 公司发给员工的股票
  • 劳务费支出计入什么会计科目
  • 利润表三步法
  • 分类信息有哪些网站
  • MicrosoftSQLserver2014
  • 织梦系统基本参数
  • pythonjam怎么用
  • 投资回收期计算公式例题
  • 税前利润包含
  • 税法增值税的不同
  • 销售二手固定资产
  • 家庭分割财产怎么处理
  • 新会计准则计提减值准备
  • 金蝶新建账套如何录入固定资产账套
  • 处置固定资产亏损,增值税所得税申报不一至情况说明
  • 专票必须公对公打款吗
  • 可明确区分的商品什么意思
  • 资本公积怎么计提
  • 实际发的工资跟个人所得税不一样怎么办
  • 土地使用税为什么要交
  • 带赠品折扣的发票怎么开
  • 管理费用和销售费用属于什么科目
  • 暂估收入怎么做分录
  • 挂靠工程项目预交税金的会计分录如何做?
  • 其他应收款待抵扣借方是什么意思啊
  • win7系统浏览器怎么设置
  • ubuntu系统管理
  • 运行linux
  • uzqkst.exe - uzqkst是什么进程
  • windows10mode
  • qbupdate.exe - qbupdate是什么进程 有什么作用
  • rasman.exe - rasman是什么进程 有什么作用
  • linux端口流量监控
  • 批处理常用命令
  • jQuery+ajax的资源回收处理机制分析
  • js怎么检查错误
  • javascript definitive guide
  • unity sp
  • n归档是什么软件
  • 玩端游的平台
  • 河南办税服务厅
  • 车船税每年多少钱
  • 党费减免规定
  • 税务 稽查局
  • 中国古代的税收制度的演变
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设