位置: IT常识 - 正文

将yolov5中的PANet层改为BiFPN(yolov5输出result)

编辑:rootadmin
将yolov5中的PANet层改为BiFPN 本文以YOLOv5-6.1版本为例

推荐整理分享将yolov5中的PANet层改为BiFPN(yolov5输出result),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov5的map,yolov5的map,yolov5 output,yolov5实现,yolov5实现,yolov5实现,yolov5实现,yolov1到yolov5,内容如对您有帮助,希望把文章链接给更多的朋友!

一、Add

1.在common.py后加入如下代码

# 结合BiFPN 设置可学习参数 学习不同分支的权重# 两个分支add操作class BiFPN_Add2(nn.Module): def __init__(self, c1, c2): super(BiFPN_Add2, self).__init__() # 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter # 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter # 从而在参数优化的时候可以自动一起优化 self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.epsilon = 0.0001 self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0) self.silu = nn.SiLU() def forward(self, x): w = self.w weight = w / (torch.sum(w, dim=0) + self.epsilon) return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1]))# 三个分支add操作class BiFPN_Add3(nn.Module): def __init__(self, c1, c2): super(BiFPN_Add3, self).__init__() self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.epsilon = 0.0001 self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0) self.silu = nn.SiLU() def forward(self, x): w = self.w weight = w / (torch.sum(w, dim=0) + self.epsilon) # 将权重进行归一化 # Fast normalized fusion return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1] + weight[2] * x[2]))

2.yolov5s.yaml进行修改

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parametersnc: 80 # number of classesdepth_multiple: 0.33 # model depth multiplewidth_multiple: 0.50 # layer channel multipleanchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32# YOLOv5 v6.0 backbonebackbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ]# YOLOv5 v6.0 BiFPN headhead: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, BiFPN_Add2, [256, 256]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, BiFPN_Add2, [128, 128]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [512, 3, 2]], # 为了BiFPN正确add,调整channel数 [[-1, 13, 6], 1, BiFPN_Add3, [256, 256]], # cat P4 <--- BiFPN change 注意v5s通道数是默认参数的一半 [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, BiFPN_Add2, [256, 256]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]

3.修改yolo.py,在parse_model函数中找到elif m is Concat:语句,在其后面加上BiFPN_Add相关语句:

# 添加bifpn_add结构elif m in [BiFPN_Add2, BiFPN_Add3]: c2 = max([ch[x] for x in f])

4.修改train.py,向优化器中添加BiFPN的权重参数

将BiFPN_Add2和BiFPN_Add3函数中定义的w参数,加入g1

将yolov5中的PANet层改为BiFPN(yolov5输出result)

# BiFPN_Concat elif isinstance(v, BiFPN_Add2) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter): g1.append(v.w) elif isinstance(v, BiFPN_Add3) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter): g1.append(v.w)

然后导入一下这两个包

一、Concat

1.在common.py后加入如下代码

# 结合BiFPN 设置可学习参数 学习不同分支的权重# 两个分支concat操作class BiFPN_Concat2(nn.Module): def __init__(self, dimension=1): super(BiFPN_Concat2, self).__init__() self.d = dimension self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) self.epsilon = 0.0001 def forward(self, x): w = self.w weight = w / (torch.sum(w, dim=0) + self.epsilon) # 将权重进行归一化 # Fast normalized fusion x = [weight[0] * x[0], weight[1] * x[1]] return torch.cat(x, self.d)# 三个分支concat操作class BiFPN_Concat3(nn.Module): def __init__(self, dimension=1): super(BiFPN_Concat3, self).__init__() self.d = dimension # 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter # 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter # 从而在参数优化的时候可以自动一起优化 self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) self.epsilon = 0.0001 def forward(self, x): w = self.w weight = w / (torch.sum(w, dim=0) + self.epsilon) # 将权重进行归一化 # Fast normalized fusion x = [weight[0] * x[0], weight[1] * x[1], weight[2] * x[2]] return torch.cat(x, self.d)

2.yolov5s.yaml进行修改 

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parametersnc: 80 # number of classesdepth_multiple: 0.33 # model depth multiplewidth_multiple: 0.50 # layer channel multipleanchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32# YOLOv5 v6.0 backbonebackbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ]# YOLOv5 v6.0 BiFPN headhead: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, BiFPN_Concat2, [1]], # cat backbone P4 <--- BiFPN change [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, BiFPN_Concat2, [1]], # cat backbone P3 <--- BiFPN change [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14, 6], 1, BiFPN_Concat3, [1]], # cat P4 <--- BiFPN change [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, BiFPN_Concat2, [1]], # cat head P5 <--- BiFPN change [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]

3.修改yolo.py,在parse_model函数中找到elif m is Concat:语句,在其后面加上BiFPN_Concat相关语句: 

# 添加bifpn_concat结构elif m in [Concat, BiFPN_Concat2, BiFPN_Concat3]: c2 = sum(ch[x] for x in f)

4.修改train.py,向优化器中添加BiFPN的权重参数

添加复方式同上(Add)

# BiFPN_Concat elif isinstance(v, BiFPN_Concat2) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter): g1.append(v.w) elif isinstance(v, BiFPN_Concat3) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter): g1.append(v.w)

至此,大功告成~~~

reference:【YOLOv5-6.x】设置可学习权重结合BiFPN(Add操作)_嗜睡的篠龙的博客-CSDN博客【YOLOv5-6.x】设置可学习权重结合BiFPN(Concat操作)_嗜睡的篠龙的博客-CSDN博客_bifpn代码

本文链接地址:https://www.jiuchutong.com/zhishi/289727.html 转载请保留说明!

上一篇:vue.config.js 中 devServer.proxy 配置说明,以及配置正确不生效问题

下一篇:伊兰谷中的Pen y Garreg水坝,威尔士 (© Joe Daniel Price/Moment Open/Getty Images)(伊兰简介)

  • 2019年工会经费新规定
  • 法人分配利润分录
  • 通过扣缴义务人和综合申报哪个好
  • 占用农村宅基地建豪宅
  • 商品流通企业成本核算的内容包括
  • 无法收回的应收账款情况说明
  • 冲减本年利润
  • 刷单成本计入什么费用?
  • 土地不动产登记证办理流程
  • 境外企业分红怎么交税
  • 家电以旧换新怎么做账务处理
  • 金税系统年度维护费发票抵扣需要认证吗?
  • 防洪费2019年税率
  • 企业所得税怎么征收
  • 案例分析:实物抵债的涉税问题
  • 个税申报需要补税是什么情况
  • 园林工程的范围包括哪些?
  • 人工工资应该计什么科目
  • 原材料因管理不善被盗的会计分录
  • 采购过程中产生的物流成本案例分析
  • 发现以前年度未做领料生产的分录怎么处理
  • 坏账核销的依据
  • windows11启动卡在转圈圈
  • 反射调用set方法
  • ccc.exe是什么进程
  • postman如何设置token
  • 狮子岩斯里兰卡
  • HTML布局方式
  • 总承包合同如何约定农民工工资
  • 一文教会你何为重绘、回流?
  • yolov4tiny网络结构
  • Diffusion models代码实战:从零搭建自己的扩散模型
  • php递归函数详解
  • 待摊费用在资产负债表里写在哪
  • 什么是资产减值准备计提
  • 织梦怎么样
  • 贴现需要什么手续
  • 房地产企业样板间装修费账务处理
  • 代扣代缴个人所得税手续费返还 增值税
  • 一般纳税人申报表电子版
  • 什么样的差旅费津贴可以税前扣除
  • 以前年度损益调整结转到哪里
  • 注销营业执照的app
  • 小规模纳税人零税率怎么申报
  • 劳务费怎么要的回来
  • 现金收入支出表怎么填
  • 差旅费属于什么会计科目 会计分录
  • 外经证报验登记流程
  • 已认证未记账
  • 民办非企业单位什么意思
  • 商品销售企业成本包括
  • 非流动性资产有
  • 财产保险的金额
  • 报销需要发票吗?
  • 收到专票可以不签字吗
  • 账簿设计要以()为前提
  • 建筑施工企业会计分录大全
  • 获取sqlserver密码
  • win8换win7详细过程
  • 苹果Mac系统怎么切换输入法
  • linux chkdsk
  • linux ifconfig命令详解
  • Windows系统通过注册表实现打开CMD并定位到指定文件夹
  • win10应用商店更新软件更新不了
  • Linux基本命令使用
  • linux gtk+
  • win8电脑锁屏时间怎么设置方法
  • windows8装windows10,文件会丢失吗
  • linux系统修复
  • unity3D游戏开发
  • JavaScript事件代理和委托详解
  • 虚拟机中使用keil
  • list在python中的作用
  • jquery插件库怎么导入
  • javascript教程
  • javascript数组的常用方法
  • 税务金三系统什么意思?
  • 稳岗补贴是否需在企业所得税汇算时调增
  • blueerdos和鄂尔多斯区别
  • 深圳监狱在哪个位置
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设