位置: IT常识 - 正文

YOLOV8——快速训练指南(上手教程、自定义数据训练)(yolov3训练自己的数据超详细)

编辑:rootadmin
YOLOV8——快速训练指南(上手教程、自定义数据训练) 概述    

推荐整理分享YOLOV8——快速训练指南(上手教程、自定义数据训练)(yolov3训练自己的数据超详细),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov2训练,yolov1训练过程,yolov3训练自己的数据超详细,yolov3训练自己的数据超详细,yolov5训练命令,yolov3训练自己的数据超详细,yolov训练,yolov3训练速度,内容如对您有帮助,希望把文章链接给更多的朋友!

    本篇主要用于说明如何使用自己的训练数据,快速在YOLOV8 框架上进行训练。当前(20230116)官方文档和网上的资源主要都是在开源的数据集上进行测试,对于算法“小白”或者“老鸟”如何快速应用到自己的项目中,这个单纯看官方文档显得有点凌乱,因为YOLOV8 不再致力于做一个单纯算法,而是想要做一个一统(分类、检测、分割且多种模型)的框架。下面以检测为例。

    安装,官方提供了完整的安装方式:Quickstart - Ultralytics YOLOv8 Docs 如果希望不安装直接使用,参考本文第七节。 

详细1、标注

        准备自己的数据,数据的标注格式和YOLOV5没有分别,一般工业还是需要使用如labelme等标注,格式为coco格式(class_id x y w x)xywx均需要归一化,类别号从0开始,一个框一行。

2、目录的组织形式:

        低阶使用, 可无痛迁移YOLO6 YOLOv7

        以“images” 命名图片路径,标签路径仅仅是将“images” 变为“labels”;代码自动对应images和labels,所以一张图片的标签需要和图片同名(如果没有对应的label 就是认为是背景图,没有目标)。

        高阶使用, YOLOV6 YOLOv7 当前某些方式不支持。

        20230116 主要的源码路径为:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/dataloaders/v5loader.py

函数“LoadImages”用于推理,函数“LoadImagesAndLabels” 用于训练,但是并没有统一支持的数据目录存放格式。

        1)使用文件夹(列表)文件夹存储所有的训练图片(由于磁盘文件系统,单个文件夹文件过多影响吞吐速度)。

单个文件夹对应配置文件的写法

path: ../datasets/VOCtrain: # train images (relative to 'path')  - images/train2007val: # val images (relative to 'path')  - images/test2007test: # test images (optional)  - images/test2007

多个文件夹对应配置文件的写法

path: ../datasets/VOCtrain: # train images (relative to 'path')  - images/train2012  - images/train2007val: # val images (relative to 'path')  - images/test2007test: # test images (optional)  - images/test2007

2)使用文本文件(列表)存储图片

单个文本文件对应配置文件的写法

path: ../datasets/VOCtrain: # train images (relative to 'path')  - train2017.txtval: # val images (relative to 'path')  - val2017.txttest: # test images (optional)  - test-dev2017.txt

多个文本文件对应配置文件的写法(目前20230116仅detect 推理支持,训练不支持,需要修改源码)

path: ../datasets/VOCtrain: # train images (relative to 'path')  - train2017.txt  - train2012.txtval: # val images (relative to 'path')  - val2017.txttest: # test images (optional)  - test-dev2017.txt

参考源代码:

1)函数“LoadImages”用于推理

注意:

*可以为多个文件夹路径,为相对路径

*文件名列表文本文件只支持一个文本文件,路径为绝对路径

*可以同时存在一个文本文件+若干目录

2)函数“LoadImages”用于训练和评测

注意:

*可以为多个文件夹路径,为相对路径

*可以为多个文件名列表文本文件,路径为:绝对路径,或者相对路径但是是相对文本文件的路径!

*可以同时存在若干文本文件+若干目录

YOLOV8——快速训练指南(上手教程、自定义数据训练)(yolov3训练自己的数据超详细)

3、编写data yaml 文件

可以参考:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/datasets/coco128.yaml

4、编写模型yaml 文件 或者用预训练模型

    这里的yaml 文件其实就是利用现有的模型组件重新搭建一个新的网络,可以参照如下,或者简单就用预训练的模型(只需要改为yolov8n.pt)。官方配置文件:ultralytics/yolov8n.yaml at main · ultralytics/ultralytics · GitHub

5、编写训练参数文件(可选、高阶)

    官方终于把所有的配置项目全部解耦到配置文件,不再像YOLOV5一样,一部分在配置文件,一部分在train.py 的启动参数中。主要修改如下三个大的代码段。其中有个需要注意的代码段就是“close_mosaic”这个参数,关于这个的讨论见我的另一个文章:yolov5 mosaic相关,目前要实现一个改进的mosaic,预计后续后评测效果后会考虑开源。官方配置文件:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml。

    Note:

    *如果你用的Python 接口,那么目前20230116官方无法直接传参进去修改这个配置文件或者引用新的配置文件,是写死的(下面第一张图)。https://github.com/ultralytics/ultralytics/blob/4962733b49d45e1ae6e7b3ca367e9af9756758bc/ultralytics/yolo/utils/__init__.py

    *如果是cli接口,那么可以复写这个配置文件,下面第二、三张图。https://github.com/ultralytics/ultralytics/blob/c42e44a0211881b661b47050ac2727658078497d/docs/cli.md

    *当然常用的修改参数也是可以传参修改的,见:Configuration - Ultralytics YOLOv8 Docs,下面第四、五张图。 Detection - Ultralytics YOLOv8 Docs。

    *个人还是建议通过配置文件的方式管理训练过程,这样可以快速的追溯每一个实验。 完整的命令就是:

 yolo task=init  # 可选,复制一份默认配置到当前目录供修改。

 yolo  data=coco128.yaml model=yolov8n.pt  cfg=exp1.yaml #一旦用了cfg参数 命令行的task=detect、 mode=train 当前版本不再生效

6、训练脚本

7、高阶使用

        如果你想改源码,或者不希望通过pip 的方式,污染环境,还是希望安装源码,然后python xxxx.py 运行。那么需要:

1)git clone 源码

2)新建(复制)一个自己的调用脚本。

源码链接:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cli.py。复制到根目录 。

3)根目录正常调用 python cli.py cfg=/home/xxx/…/exp1.yaml 这个yaml 就是https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml。

原理:

        其实官方也是通过这两个文件完成的打包和调用,主要就是这句话:

1)https://github.com/ultralytics/ultralytics/blob/main/setup.py

2)https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cli.py

 

打赏

        你的打赏是我不断分享的动力,羞羞。点这里,嘿嘿。

本文链接地址:https://www.jiuchutong.com/zhishi/290861.html 转载请保留说明!

上一篇:法国西南部阿卡雄湾的皮拉沙丘 (© aluxum/iStock/Getty Images Plus)(法国西南部城市)

下一篇:IDEA使用vue的安装与配置(详细教程)(idea安装vue.js)

  • 购入安装设备的专用材料分录
  • 增值税报表申报流程
  • 代订餐如何赚钱
  • 退回多报的教育费附加如何做账
  • 林业局会计咋样做账
  • 房产税原值是否包括土地
  • 转增股本是不是缴个人所得税
  • 应交增值税明细科目核算内容
  • 应交税费进项税额属于什么科目借贷方向
  • 暂估进项税额
  • 往年的制造费用怎么算
  • 应交税金属于什么会计分录
  • 当月作废的专票需要开负数发票么
  • 车辆保险费的车船税计入什么会计科目
  • 给工会开发票企业需要报税吗?
  • 承兑跨省是不是不能用
  • 职工福利费要申报吗
  • 微软输入法打不出汉字只有拼音
  • 收不回的心
  • 公司旅游费用怎么入账
  • docker搭建php
  • php源码怎么上传到服务器
  • 商业一般纳税人标准
  • 年末一般纳税人税率表
  • 税控设备购买
  • 企业年金基金收益
  • 无法ping通ip地址
  • php写木马
  • php root
  • php imagecopymerge
  • 无形资产的摊销计入什么科目
  • 发放员工奖励
  • php正则函数内容匹配
  • 餐饮发票可以计入福利费吗
  • php xdebug配置
  • php抽象类可以多继承吗
  • apt-key is deprecated
  • php读取文件内容的方法和函数
  • 新个人所得税起征点2023
  • css媒体查询不起作用
  • 固定资产支出计入什么科目
  • 超市的购物卡以什么为准
  • mongodb用法
  • 支票的法人章盖倒了了可以吗
  • 起征点税种
  • 增值税延期滞纳金计算
  • 政府补助属于营业外收入吗
  • 医疗费用属于什么费用
  • 生产加工企业辅导资料
  • 利润总额是负数怎么计算利润率
  • 社保稳岗补贴账务处理分录
  • 机票退票费计入什么科目
  • 宣传费抵扣
  • 包工包料怎么开13个点发票
  • 成本结转的方法实例
  • 企业差旅费的报销流程
  • win10开机内存就占了70 解决方法
  • ubuntu20.04命令
  • win10系统预览版
  • notify.exe - notify是什么进程 有什么用
  • 怎么下载win8
  • win8的ie浏览器
  • Win10 Mobile Build 14342上手体验视频
  • win8更改电脑设置在哪
  • win10桌面图片预览
  • cocos2d-x教程
  • cocos2dx4.0教程
  • linux shell echo
  • javascript数据结构与算法第三版
  • 最新推荐美剧
  • 右键打开方式里没有word
  • js最简单的代码
  • android怎么学
  • js domcontentloaded
  • javascript入门教程
  • unity的spine动画切换
  • 香皂需要换着用吗
  • 贵州房产备案信息查询网
  • 南通国资委网站首页
  • 西安市灵活就业社保缴费截止时间
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设