位置: IT常识 - 正文

YOLOV8——快速训练指南(上手教程、自定义数据训练)(yolov3训练自己的数据超详细)

编辑:rootadmin
YOLOV8——快速训练指南(上手教程、自定义数据训练) 概述    

推荐整理分享YOLOV8——快速训练指南(上手教程、自定义数据训练)(yolov3训练自己的数据超详细),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov2训练,yolov1训练过程,yolov3训练自己的数据超详细,yolov3训练自己的数据超详细,yolov5训练命令,yolov3训练自己的数据超详细,yolov训练,yolov3训练速度,内容如对您有帮助,希望把文章链接给更多的朋友!

    本篇主要用于说明如何使用自己的训练数据,快速在YOLOV8 框架上进行训练。当前(20230116)官方文档和网上的资源主要都是在开源的数据集上进行测试,对于算法“小白”或者“老鸟”如何快速应用到自己的项目中,这个单纯看官方文档显得有点凌乱,因为YOLOV8 不再致力于做一个单纯算法,而是想要做一个一统(分类、检测、分割且多种模型)的框架。下面以检测为例。

    安装,官方提供了完整的安装方式:Quickstart - Ultralytics YOLOv8 Docs 如果希望不安装直接使用,参考本文第七节。 

详细1、标注

        准备自己的数据,数据的标注格式和YOLOV5没有分别,一般工业还是需要使用如labelme等标注,格式为coco格式(class_id x y w x)xywx均需要归一化,类别号从0开始,一个框一行。

2、目录的组织形式:

        低阶使用, 可无痛迁移YOLO6 YOLOv7

        以“images” 命名图片路径,标签路径仅仅是将“images” 变为“labels”;代码自动对应images和labels,所以一张图片的标签需要和图片同名(如果没有对应的label 就是认为是背景图,没有目标)。

        高阶使用, YOLOV6 YOLOv7 当前某些方式不支持。

        20230116 主要的源码路径为:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/dataloaders/v5loader.py

函数“LoadImages”用于推理,函数“LoadImagesAndLabels” 用于训练,但是并没有统一支持的数据目录存放格式。

        1)使用文件夹(列表)文件夹存储所有的训练图片(由于磁盘文件系统,单个文件夹文件过多影响吞吐速度)。

单个文件夹对应配置文件的写法

path: ../datasets/VOCtrain: # train images (relative to 'path')  - images/train2007val: # val images (relative to 'path')  - images/test2007test: # test images (optional)  - images/test2007

多个文件夹对应配置文件的写法

path: ../datasets/VOCtrain: # train images (relative to 'path')  - images/train2012  - images/train2007val: # val images (relative to 'path')  - images/test2007test: # test images (optional)  - images/test2007

2)使用文本文件(列表)存储图片

单个文本文件对应配置文件的写法

path: ../datasets/VOCtrain: # train images (relative to 'path')  - train2017.txtval: # val images (relative to 'path')  - val2017.txttest: # test images (optional)  - test-dev2017.txt

多个文本文件对应配置文件的写法(目前20230116仅detect 推理支持,训练不支持,需要修改源码)

path: ../datasets/VOCtrain: # train images (relative to 'path')  - train2017.txt  - train2012.txtval: # val images (relative to 'path')  - val2017.txttest: # test images (optional)  - test-dev2017.txt

参考源代码:

1)函数“LoadImages”用于推理

注意:

*可以为多个文件夹路径,为相对路径

*文件名列表文本文件只支持一个文本文件,路径为绝对路径

*可以同时存在一个文本文件+若干目录

2)函数“LoadImages”用于训练和评测

注意:

*可以为多个文件夹路径,为相对路径

*可以为多个文件名列表文本文件,路径为:绝对路径,或者相对路径但是是相对文本文件的路径!

*可以同时存在若干文本文件+若干目录

YOLOV8——快速训练指南(上手教程、自定义数据训练)(yolov3训练自己的数据超详细)

3、编写data yaml 文件

可以参考:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/datasets/coco128.yaml

4、编写模型yaml 文件 或者用预训练模型

    这里的yaml 文件其实就是利用现有的模型组件重新搭建一个新的网络,可以参照如下,或者简单就用预训练的模型(只需要改为yolov8n.pt)。官方配置文件:ultralytics/yolov8n.yaml at main · ultralytics/ultralytics · GitHub

5、编写训练参数文件(可选、高阶)

    官方终于把所有的配置项目全部解耦到配置文件,不再像YOLOV5一样,一部分在配置文件,一部分在train.py 的启动参数中。主要修改如下三个大的代码段。其中有个需要注意的代码段就是“close_mosaic”这个参数,关于这个的讨论见我的另一个文章:yolov5 mosaic相关,目前要实现一个改进的mosaic,预计后续后评测效果后会考虑开源。官方配置文件:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml。

    Note:

    *如果你用的Python 接口,那么目前20230116官方无法直接传参进去修改这个配置文件或者引用新的配置文件,是写死的(下面第一张图)。https://github.com/ultralytics/ultralytics/blob/4962733b49d45e1ae6e7b3ca367e9af9756758bc/ultralytics/yolo/utils/__init__.py

    *如果是cli接口,那么可以复写这个配置文件,下面第二、三张图。https://github.com/ultralytics/ultralytics/blob/c42e44a0211881b661b47050ac2727658078497d/docs/cli.md

    *当然常用的修改参数也是可以传参修改的,见:Configuration - Ultralytics YOLOv8 Docs,下面第四、五张图。 Detection - Ultralytics YOLOv8 Docs。

    *个人还是建议通过配置文件的方式管理训练过程,这样可以快速的追溯每一个实验。 完整的命令就是:

 yolo task=init  # 可选,复制一份默认配置到当前目录供修改。

 yolo  data=coco128.yaml model=yolov8n.pt  cfg=exp1.yaml #一旦用了cfg参数 命令行的task=detect、 mode=train 当前版本不再生效

6、训练脚本

7、高阶使用

        如果你想改源码,或者不希望通过pip 的方式,污染环境,还是希望安装源码,然后python xxxx.py 运行。那么需要:

1)git clone 源码

2)新建(复制)一个自己的调用脚本。

源码链接:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cli.py。复制到根目录 。

3)根目录正常调用 python cli.py cfg=/home/xxx/…/exp1.yaml 这个yaml 就是https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml。

原理:

        其实官方也是通过这两个文件完成的打包和调用,主要就是这句话:

1)https://github.com/ultralytics/ultralytics/blob/main/setup.py

2)https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cli.py

 

打赏

        你的打赏是我不断分享的动力,羞羞。点这里,嘿嘿。

本文链接地址:https://www.jiuchutong.com/zhishi/290861.html 转载请保留说明!

上一篇:法国西南部阿卡雄湾的皮拉沙丘 (© aluxum/iStock/Getty Images Plus)(法国西南部城市)

下一篇:IDEA使用vue的安装与配置(详细教程)(idea安装vue.js)

  • 咨询服务费预收率怎么算
  • 餐饮服务属于什么票据类型
  • 亏损企业要做业务处理吗
  • 会计账簿按外表形式分
  • 税务变更需要哪些材料
  • 商业用房怎么缴税
  • 转账支票支付购货款填制什么凭证
  • 职工暖气费报销算福利
  • 收到子公司非货币资产分配账务处理
  • 新产品开发费用怎么扣除
  • 增值税电子发票怎么开具流程
  • 怎么辨认专用发票真伪
  • 钢化玻璃税率是多少?
  • 没有发生关联交易需要关联申报吗?
  • 医院医保统筹支付后还能报销吗
  • 营改增的纳税人
  • 出纳微信收款之后怎么做
  • 一季度所得税费用怎么算
  • 高新技术企业研发人员学历要求
  • 未开票的货款记什么科目
  • 个税汇算清缴申报错误怎么办
  • 企业信息公示社保信息怎么填,公司没有交
  • 苹果手机查看激活id账号信息
  • 信用卡扣手续费怎么算的
  • 固定资产未开发票怎么入账
  • 自产原材料
  • 工会经费,职工福利费,教育经费的扣除标准
  • php到底是什么
  • 个人所得税手续费返还
  • 建筑劳务公司计提工资怎么做账
  • 预付采购材料货款
  • python模拟微信
  • 公司交社保需要承担多少费用
  • 应税货物及劳务无法录入
  • thinkphp和php
  • 固定资产的销售怎么做账
  • 计提本月银行存款应收利息会计分录
  • python编程快速上手pdf百度云
  • 以前年度损益调整借贷方向
  • 一般贸易和进料加工退税的区别
  • 股东之间股权转让需要股东会决议吗
  • 金蝶k3现金流量表编制如何生成数据
  • 个税申报系统累计收入怎么算
  • 税务异常怎么处理要多长时间
  • 公司个人所得税申报操作流程
  • Win2008中SqlServer2008 无法打开错误日志文件导致无法启动的解决方法
  • 个人所得税的征收
  • 员工的提成
  • 转让股权收入属于收入总额吗
  • 提供维修业务的税率是多少
  • 未取得发票如何报销
  • 固定资产一次性加速折旧
  • 应付票据是
  • 如何收信用卡付款
  • 税法对企业费用的限定
  • 期间费用率怎么算
  • 原始凭证分割单怎么填写
  • 会计刚开始学什么
  • 企业建账的流程有哪些
  • 如何正确设置会员账号
  • 账簿凭证管理的内容
  • SQL Server中通过扩展存储过程实现数据库的远程备份与恢复
  • mysql解压版怎么使用
  • windows xp打开服务
  • ubuntu21 安装
  • ubuntu虚拟机apt安装tools
  • 进程出现很多regsvr32
  • rundll32.exe进程很多
  • win10系统运行速度慢
  • unity获取mesh网格数据
  • 快速掌握日语词汇
  • unity openvr
  • android javascript 混淆配置。
  • jquery定义方法
  • jquery基础教程详解
  • jquery遍历radio并选中
  • python里list
  • 租房完税证明需要房东交钱吗?
  • 印花税应税凭证数量是什么意思
  • 在哪里查看法律
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设