位置: IT常识 - 正文

YOLOV8——快速训练指南(上手教程、自定义数据训练)(yolov3训练自己的数据超详细)

编辑:rootadmin
YOLOV8——快速训练指南(上手教程、自定义数据训练) 概述    

推荐整理分享YOLOV8——快速训练指南(上手教程、自定义数据训练)(yolov3训练自己的数据超详细),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov2训练,yolov1训练过程,yolov3训练自己的数据超详细,yolov3训练自己的数据超详细,yolov5训练命令,yolov3训练自己的数据超详细,yolov训练,yolov3训练速度,内容如对您有帮助,希望把文章链接给更多的朋友!

    本篇主要用于说明如何使用自己的训练数据,快速在YOLOV8 框架上进行训练。当前(20230116)官方文档和网上的资源主要都是在开源的数据集上进行测试,对于算法“小白”或者“老鸟”如何快速应用到自己的项目中,这个单纯看官方文档显得有点凌乱,因为YOLOV8 不再致力于做一个单纯算法,而是想要做一个一统(分类、检测、分割且多种模型)的框架。下面以检测为例。

    安装,官方提供了完整的安装方式:Quickstart - Ultralytics YOLOv8 Docs 如果希望不安装直接使用,参考本文第七节。 

详细1、标注

        准备自己的数据,数据的标注格式和YOLOV5没有分别,一般工业还是需要使用如labelme等标注,格式为coco格式(class_id x y w x)xywx均需要归一化,类别号从0开始,一个框一行。

2、目录的组织形式:

        低阶使用, 可无痛迁移YOLO6 YOLOv7

        以“images” 命名图片路径,标签路径仅仅是将“images” 变为“labels”;代码自动对应images和labels,所以一张图片的标签需要和图片同名(如果没有对应的label 就是认为是背景图,没有目标)。

        高阶使用, YOLOV6 YOLOv7 当前某些方式不支持。

        20230116 主要的源码路径为:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/dataloaders/v5loader.py

函数“LoadImages”用于推理,函数“LoadImagesAndLabels” 用于训练,但是并没有统一支持的数据目录存放格式。

        1)使用文件夹(列表)文件夹存储所有的训练图片(由于磁盘文件系统,单个文件夹文件过多影响吞吐速度)。

单个文件夹对应配置文件的写法

path: ../datasets/VOCtrain: # train images (relative to 'path')  - images/train2007val: # val images (relative to 'path')  - images/test2007test: # test images (optional)  - images/test2007

多个文件夹对应配置文件的写法

path: ../datasets/VOCtrain: # train images (relative to 'path')  - images/train2012  - images/train2007val: # val images (relative to 'path')  - images/test2007test: # test images (optional)  - images/test2007

2)使用文本文件(列表)存储图片

单个文本文件对应配置文件的写法

path: ../datasets/VOCtrain: # train images (relative to 'path')  - train2017.txtval: # val images (relative to 'path')  - val2017.txttest: # test images (optional)  - test-dev2017.txt

多个文本文件对应配置文件的写法(目前20230116仅detect 推理支持,训练不支持,需要修改源码)

path: ../datasets/VOCtrain: # train images (relative to 'path')  - train2017.txt  - train2012.txtval: # val images (relative to 'path')  - val2017.txttest: # test images (optional)  - test-dev2017.txt

参考源代码:

1)函数“LoadImages”用于推理

注意:

*可以为多个文件夹路径,为相对路径

*文件名列表文本文件只支持一个文本文件,路径为绝对路径

*可以同时存在一个文本文件+若干目录

2)函数“LoadImages”用于训练和评测

注意:

*可以为多个文件夹路径,为相对路径

*可以为多个文件名列表文本文件,路径为:绝对路径,或者相对路径但是是相对文本文件的路径!

*可以同时存在若干文本文件+若干目录

YOLOV8——快速训练指南(上手教程、自定义数据训练)(yolov3训练自己的数据超详细)

3、编写data yaml 文件

可以参考:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/data/datasets/coco128.yaml

4、编写模型yaml 文件 或者用预训练模型

    这里的yaml 文件其实就是利用现有的模型组件重新搭建一个新的网络,可以参照如下,或者简单就用预训练的模型(只需要改为yolov8n.pt)。官方配置文件:ultralytics/yolov8n.yaml at main · ultralytics/ultralytics · GitHub

5、编写训练参数文件(可选、高阶)

    官方终于把所有的配置项目全部解耦到配置文件,不再像YOLOV5一样,一部分在配置文件,一部分在train.py 的启动参数中。主要修改如下三个大的代码段。其中有个需要注意的代码段就是“close_mosaic”这个参数,关于这个的讨论见我的另一个文章:yolov5 mosaic相关,目前要实现一个改进的mosaic,预计后续后评测效果后会考虑开源。官方配置文件:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml。

    Note:

    *如果你用的Python 接口,那么目前20230116官方无法直接传参进去修改这个配置文件或者引用新的配置文件,是写死的(下面第一张图)。https://github.com/ultralytics/ultralytics/blob/4962733b49d45e1ae6e7b3ca367e9af9756758bc/ultralytics/yolo/utils/__init__.py

    *如果是cli接口,那么可以复写这个配置文件,下面第二、三张图。https://github.com/ultralytics/ultralytics/blob/c42e44a0211881b661b47050ac2727658078497d/docs/cli.md

    *当然常用的修改参数也是可以传参修改的,见:Configuration - Ultralytics YOLOv8 Docs,下面第四、五张图。 Detection - Ultralytics YOLOv8 Docs。

    *个人还是建议通过配置文件的方式管理训练过程,这样可以快速的追溯每一个实验。 完整的命令就是:

 yolo task=init  # 可选,复制一份默认配置到当前目录供修改。

 yolo  data=coco128.yaml model=yolov8n.pt  cfg=exp1.yaml #一旦用了cfg参数 命令行的task=detect、 mode=train 当前版本不再生效

6、训练脚本

7、高阶使用

        如果你想改源码,或者不希望通过pip 的方式,污染环境,还是希望安装源码,然后python xxxx.py 运行。那么需要:

1)git clone 源码

2)新建(复制)一个自己的调用脚本。

源码链接:https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cli.py。复制到根目录 。

3)根目录正常调用 python cli.py cfg=/home/xxx/…/exp1.yaml 这个yaml 就是https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/configs/default.yaml。

原理:

        其实官方也是通过这两个文件完成的打包和调用,主要就是这句话:

1)https://github.com/ultralytics/ultralytics/blob/main/setup.py

2)https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cli.py

 

打赏

        你的打赏是我不断分享的动力,羞羞。点这里,嘿嘿。

本文链接地址:https://www.jiuchutong.com/zhishi/290861.html 转载请保留说明!

上一篇:法国西南部阿卡雄湾的皮拉沙丘 (© aluxum/iStock/Getty Images Plus)(法国西南部城市)

下一篇:IDEA使用vue的安装与配置(详细教程)(idea安装vue.js)

  • 非限定性净资产包括哪些科目
  • 季度利润表不包括什么
  • 公墓增值税政策
  • 关联方交易影响因素
  • 赔付伤残费用还有误工费用么
  • 善意取得虚开专票的条件包括
  • 三栏式和多栏式的账目有哪些
  • 电子发票打印出来没有税务局的章
  • 出口企业增值税怎么算
  • 租赁房使用权和所有权冲突
  • 供暖税收分类编码是多少
  • 增值说税率怎么计算
  • 当月增加的投资性房地产当月提折旧吗
  • 代扣车船税的手续有哪些
  • 事业单位购买固定资产如何记账
  • 应收账款抹零会计分录
  • 什么样的公司可以交五险一金
  • 农业产品免税范围注释
  • flash设置旋转
  • 为什么ie浏览器打开是2345浏览器
  • linux配置多网卡设置
  • 公司取得发明专利证书股票大涨
  • 大沙丘上的日落图片
  • 无偿赠送增值税问题
  • 开发商没交税
  • php获取文章内容图片
  • 工业企业采购部工作职责
  • 房地产开发企业会计制度
  • 新购车辆检测费计入原值吗
  • 一台电脑能不能接两个键盘
  • ajax调用
  • 猿起信息科技有限公司官网
  • 带有折扣的增值税怎么算
  • ussd命令
  • 发票报销入账
  • java聚合工程
  • 国税申报系统操作流程
  • 现金折扣退回要考虑财务费用吗
  • mongodb启动
  • 第一季度利润表年初余额
  • 土地增值税扣除项目税金包括哪些
  • 累计净值包含业绩吗
  • odbc api
  • 临时用工费开票项目
  • 研发人员的差旅费计入管理费用吗
  • 暂估入库的会计分录怎么写
  • 政府会计计提折旧方法
  • 什么是电子银行服务
  • 服装租赁费的税率是多少
  • 应交税费会计核算
  • 外币资产汇兑损失计算公式
  • 商业汇票怎么算到期日
  • 公司接待考察团的费用入哪个科目
  • 维保业务怎么开展
  • 印花税自查补缴情况说明补以前年度
  • 增值税相关的问题
  • 营业收入包括哪几项收入
  • 账务不实与账实不符
  • 政府机关有纳税人吗
  • 非营利医疗机构是什么单位
  • mysql 连续日期
  • mysql主从复制原理以及架构
  • windows电源图标消失
  • linux建立动态库链接
  • Windows7忘记开机密码一键还原
  • win10一年更新一次
  • linux rm 命令删除文件恢复
  • Win10系统里的Smartscreen筛选器的使用以及开启方法
  • win7共享文件设置
  • win7取消禁用无线网络
  • win10系统怎么cmd
  • 自定义ui界面
  • 微信小程序实现轮播图
  • jquery移动div到另一个div中
  • c#委托的理解
  • 辽宁省国家税务局电子税务局官网
  • 下载重庆税务官方app
  • 荆州区国税局
  • 中国有没有豁免权
  • 地税申报网上操作步骤
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设