位置: IT常识 - 正文

权重确定方法五:CRITIC权重法(权重值的确定可以依据什么)

编辑:rootadmin
权重确定方法五:CRITIC权重法

推荐整理分享权重确定方法五:CRITIC权重法(权重值的确定可以依据什么),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:权重如何计算举例说明,权重的确定,权重确定方法包含,权重的确定方法主要有,权重的确定方法正确的是什么法,权重的确定方法主要有,权重的确定,权重的确定方法主要有,内容如对您有帮助,希望把文章链接给更多的朋友!

半 是 温 柔 半 是 风 , 一 生 从 容 一 生 花

目录

1.原理介绍

2.步骤详解

2.1 获取数据

2.2 数据标准化

2.3 计算信息承载量

2.4 计算权重

3.案例分析

3.1 数据获取

3.2 数据标准化

3.3 计算相关系数

3.4 计算信息承载量

3.5 计算权重

4.算法改进

5.完整代码

5.1 方法类 CRITIC.java

5.2 主类 CRITICmain.java


1.原理介绍

        通常在确定指标权重时往往更多关注的是数据本身,而数据之间的波动性大小也是一种信息,或是数据之间的相关关系大小,也是一种信息,可利用数据波动性大小或数据相关关系大小计算权重。

        CRITIC权重法是一种基于数据波动性的客观赋权法。其思想在于两项指标,分别是波动性(对比强度)和冲突性(相关性)指标。对比强度使用标准差进行表示,如果数据标准差越大说明波动越大,权重会越高;冲突性使用相关系数进行表示,如果指标之间的相关系数值越大,说明冲突性越小,那么其权重也就越低。权重计算时,对比强度与冲突性指标相乘,并且进行归一化处理,即得到最终的权重。

        CRITIC权重法适用于数据稳定性可视作一种信息,并且分析的指标或因素之间有着一定的关联关系的数据。

2.步骤详解2.1 获取数据

假设现有一组数据,有m个待评价对象,n个评价指标,构成原始数据矩阵X:

2.2 数据标准化

数据标准化的主要目的就是消除量纲影响,使所以数据能用统一的标准去衡量。

对于正向指标:

对于逆向指标:

2.3 计算信息承载量

波动性:

冲突性:

计算冲突性时要用到指标的相关性矩阵,计算公式如下:

 则,冲突性计公式:

权重确定方法五:CRITIC权重法(权重值的确定可以依据什么)

信息量:

2.4 计算权重

3.案例分析

        以下是某医院连续十天内的部分数据,其中某些指标的稳定性是一种信息,而且指标之间本身就可能有着相关性。

编号出院人数入出院诊断符合率治疗有效率平均床位使用率病床周转次数1920.80.520.8662120.730.380.48373680.150.750.28494170.160.970.25505420.090.820.18176200.650.860.88397830.190.670.71858280.590.740.39449930.70.240.14710420.230.690.54673.1 数据获取/** * 从Excel表格读取数据,列为评价指标行为待评价样本 * * 假设有m个待评价样本,n个评价指标 * * @param filepath 表格存储位置 * @return componentMartix 返回原始矩阵 */public double[][] read(String filepath) throws IOException, BiffException,WriteException {//创建输入流InputStream stream = new FileInputStream(filepath);//获取Excel文件对象Workbook rwb = Workbook.getWorkbook(stream);//获取文件的指定工作表 默认的第一个 Sheet sheet = rwb.getSheet("Sheet1"); int rows = sheet.getRows(); int cols = sheet.getColumns(); double[][] componentMatrix = new double[rows][cols];//原始矩阵//row为行for(int i=0;i<sheet.getRows();i++) {for(int j=0;j<sheet.getColumns();j++) {String[] str = new String[sheet.getColumns()]; Cell cell = null; cell = sheet.getCell(j,i); str[j] = cell.getContents(); componentMatrix[i][j] = Double.valueOf(str[j]);} }return componentMatrix;//返回原始矩阵}

 输出:

3.2 数据标准化/** * 数据标准化处理,消除量纲影响 * @param componentMatrix 输入原始矩阵 * @return normalizedMatrix 返回标准化后的矩阵 */public double[][] normalized(double[][] componentMatrix) {double[][] normalizedMatrix = new double[componentMatrix.length][componentMatrix[0].length];List<Integer> neg = new ArrayList<Integer>();//存储逆向指标所在列double[] max = Max(componentMatrix);double[] min = Min(componentMatrix);int a;for(int i=0; i < componentMatrix.length; i++) {for(int j=0; j < componentMatrix[0].length; j++) {normalizedMatrix[i][j] = (componentMatrix[i][j] - min[j])/(max[j] - min[j]);}}System.out.println("是否有逆向指标?(越小越优型指标)若有输入1,若无输入2");a = input.nextInt();if(a ==1 ) {System.out.println("输入逆向指标所在列(以“/”结尾):");while(!input.hasNext("/")) {neg.add(Integer.valueOf(input.nextInt()));}for(int i=0; i < componentMatrix.length; i++) {for(int j=0; j < neg.size(); j++) {normalizedMatrix[i][neg.get(j)] = (max[neg.get(j)]-componentMatrix[i][neg.get(j)])/(max[neg.get(j)] - min[neg.get(j)]);}}}return normalizedMatrix;}

输出:

3.3 计算相关系数/** * 计算相关系数矩阵 * @param normalizedMatrix 标准化后数据 * @return pearson 皮尔逊相关系数矩阵 */public double[][] correlation(double[][] normalizedMatrix){double[][] pearson = new double[normalizedMatrix[0].length][normalizedMatrix[0].length];//皮尔逊相关系数矩阵double[] avr = Average(normalizedMatrix);//每列平均值double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}double[][] cxy = new double[normalizedMatrix[0].length][normalizedMatrix[0].length];for(int j=0;j<normalizedMatrix[0].length;j++) {for(int k=0;k<normalizedMatrix[0].length;k++) {double sum = 0;for(int i=0;i<normalizedMatrix.length;i++) {sum += (normalizedMatrix[i][j] - avr[j])*(normalizedMatrix[i][k] - avr[k]);}cxy[j][k] = sum/(pearson.length - 1);pearson[j][k] = cxy[j][k]/(s[j]*s[k]);}}return pearson;}

输出:

3.4 计算信息承载量/** * 计算每个指标的信息承载量 * @param normalizedMatrix 标准化后的矩阵 * @param pearson 皮尔逊相关系数矩阵 * @return informationVolume 每个指标的信息承载量 */public double[] information(double[][] normalizedMatrix,double[][] pearson) {double[] informationVolume = new double[normalizedMatrix[0].length];double[] avr = Average(normalizedMatrix);//每列平均值//计算对比强度(标准差)double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}//计算冲突性double[] r = new double[normalizedMatrix[0].length];for(int j=0;j<normalizedMatrix[0].length;j++) {double sum = 0;for(int i=0;i<normalizedMatrix[0].length;i++) {sum += 1 - pearson[i][j];}r[j] = sum;}//计算信息量for(int j=0;j<normalizedMatrix[0].length;j++) {informationVolume[j] = s[j]*r[j];}return informationVolume;}

输出:

3.5 计算权重/** * 计算权重 * @param informationVolume 每个指标的信息量 * @return weight 返回每个指标的权重 */public double[] weight(double[] informationVolume) {double[] weight = new double[informationVolume.length];double sum = 0;for(int i=0;i<informationVolume.length;i++) {sum += informationVolume[i];}for(int i=0;i<informationVolume.length;i++) {weight[i] = informationVolume[i]/sum;}return weight;}

输出:

4.算法改进

        从上述计算步骤可以看出 CRITIC 法存在以下可以 改进和完善的地方 :(1)相关系数有正有负,对于绝对值相同的相关系数其反映指 标间的相关性程度大小应是一样的 ,因此在反映指标 之间的对比强度时用 (1−|rij|) 代替原方法中的 (1−rij) 更 适合 ;(2)CRITIC 法虽能有效考虑指标数据间的相关性(冲突性)和对比强度 (波动性),但未考虑指标数据间的离散程度。因此,需要对 CRITIC 法进行改进,以使改进的 CRITIC 法能够充分考虑指标数据本身的三大属性。

        改进后的计算公式如下:

        其中代表用熵权法计算得到的指标熵值(不会计算的可以点击阅读文章“权重计算方法二:熵权法(EWM)”),为对比强度,为第i个指标与第j个指标的相关系数。

/** * 改进算法 * @param normalizedMatrix 标准化后的矩阵 * @param pearson 皮尔逊相关系数矩阵 * @param ewm 熵权法求得的指标熵值 * @return */public double[] weight1(double[][] normalizedMatrix,double[][] pearson,double[] ewm) {double[] informationVolume = new double[normalizedMatrix[0].length];double[] avr = Average(normalizedMatrix);//每列平均值double[] weight = new double[normalizedMatrix[0].length];double[] pear = new double[normalizedMatrix[0].length];//计算对比强度(标准差)double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}double total = 0;for(int j=0;j<normalizedMatrix[0].length;j++) {for(int i=0;i<normalizedMatrix[0].length;i++) {pear[j] += Math.abs(pearson[i][j]);}total += ewm[j] + s[j];}for(int j=0;j<normalizedMatrix[0].length;j++) {informationVolume[j] = ((ewm[j] + s[j])*pear[j])/(total + pear[j]);}double sum = 0;for(int i=0;i<informationVolume.length;i++) {sum += informationVolume[i];}for(int i=0;i<informationVolume.length;i++) {weight[i] = informationVolume[i]/sum;}return weight;}

输出:

 改进前后结果对比:

        通过观察可以发现改进后得到的权重基本与改进前得到的权重一致,但部分指标改进前后权重有较大变化,但基本保持在5%以内。

5.完整代码5.1 方法类 CRITIC.javapackage critic;import java.io.FileInputStream;import java.io.IOException;import java.io.InputStream;import java.util.ArrayList;import java.util.List;import java.util.Scanner;import jxl.Cell;import jxl.Sheet;import jxl.Workbook;import jxl.read.biff.BiffException;import jxl.write.WriteException;public class CRITIC {Scanner input = new Scanner(System.in);//矩阵每列最大值public double[] Max(double[][] m) {double max[] = new double[m[0].length];for(int j=0;j < m[0].length;j++) {max[j] = m[0][j];for(int i=0;i < m.length;i++) {if(m[i][j] >= max[j]) {max[j] = m[i][j];}}}return max;}//矩阵每列最小值public double[] Min(double[][] m) {double min[] = new double[m[0].length];for(int j=0;j < m[0].length;j++) {min[j] = m[0][j];for(int i=0;i < m.length;i++) {if(m[i][j] <= min[j]) {min[j] = m[i][j];}}}return min;}//矩阵每列平均值public double[] Average(double[][] m) {double avr[] = new double[m[0].length];for(int j=0;j < m[0].length;j++) {double sum = 0;for(int i=0;i < m.length;i++) {sum += m[i][j];}avr[j] = sum/m.length;}return avr;}//输出二维矩阵public void matrixoutput(double[][] x) {for(int i=0;i<x.length;i++) {for(int j=0;j<x[0].length;j++) {System.out.print(x[i][j]+" ");}System.out.println();}}//输出一维矩阵public void matrixoutput1(double[] x) {for(int i=0;i<x.length;i++) {System.out.print(String.format("%.8f\t", x[i]));}System.out.println();}/** * 从Excel表格读取数据,列为评价指标行为待评价样本 * * 假设有m个待评价样本,n个评价指标 * * @param filepath 表格存储位置 * @return componentMartix 返回原始矩阵 */public double[][] read(String filepath) throws IOException, BiffException,WriteException {//创建输入流InputStream stream = new FileInputStream(filepath);//获取Excel文件对象Workbook rwb = Workbook.getWorkbook(stream);//获取文件的指定工作表 默认的第一个 Sheet sheet = rwb.getSheet("Sheet1"); int rows = sheet.getRows(); int cols = sheet.getColumns(); double[][] componentMatrix = new double[rows][cols];//原始矩阵//row为行for(int i=0;i<sheet.getRows();i++) {for(int j=0;j<sheet.getColumns();j++) {String[] str = new String[sheet.getColumns()]; Cell cell = null; cell = sheet.getCell(j,i); str[j] = cell.getContents(); componentMatrix[i][j] = Double.valueOf(str[j]);} }return componentMatrix;//返回原始矩阵}/** * 数据标准化处理,消除量纲影响 * @param componentMatrix 输入原始矩阵 * @return normalizedMatrix 返回标准化后的矩阵 */public double[][] normalized(double[][] componentMatrix) {double[][] normalizedMatrix = new double[componentMatrix.length][componentMatrix[0].length];List<Integer> neg = new ArrayList<Integer>();//存储逆向指标所在列double[] max = Max(componentMatrix);double[] min = Min(componentMatrix);int a;for(int i=0; i < componentMatrix.length; i++) {for(int j=0; j < componentMatrix[0].length; j++) {normalizedMatrix[i][j] = (componentMatrix[i][j] - min[j])/(max[j] - min[j]);}}System.out.println("是否有逆向指标?(越小越优型指标)若有输入1,若无输入2");a = input.nextInt();if(a ==1 ) {System.out.println("输入逆向指标所在列(以“/”结尾):");while(!input.hasNext("/")) {neg.add(Integer.valueOf(input.nextInt()));}for(int i=0; i < componentMatrix.length; i++) {for(int j=0; j < neg.size(); j++) {normalizedMatrix[i][neg.get(j)] = (max[neg.get(j)]-componentMatrix[i][neg.get(j)])/(max[neg.get(j)] - min[neg.get(j)]);}}}return normalizedMatrix;}/** * 计算相关系数矩阵 * @param normalizedMatrix 标准化后数据 * @return pearson 皮尔逊相关系数矩阵 */public double[][] correlation(double[][] normalizedMatrix){double[][] pearson = new double[normalizedMatrix[0].length][normalizedMatrix[0].length];//皮尔逊相关系数矩阵double[] avr = Average(normalizedMatrix);//每列平均值double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}double[][] cxy = new double[normalizedMatrix[0].length][normalizedMatrix[0].length];for(int j=0;j<normalizedMatrix[0].length;j++) {for(int k=0;k<normalizedMatrix[0].length;k++) {double sum = 0;for(int i=0;i<normalizedMatrix.length;i++) {sum += (normalizedMatrix[i][j] - avr[j])*(normalizedMatrix[i][k] - avr[k]);}cxy[j][k] = sum/(pearson.length - 1);pearson[j][k] = cxy[j][k]/(s[j]*s[k]);}}return pearson;}/** * 计算每个指标的信息承载量 * @param normalizedMatrix 标准化后的矩阵 * @param pearson 皮尔逊相关系数矩阵 * @return informationVolume 每个指标的信息承载量 */public double[] information(double[][] normalizedMatrix,double[][] pearson) {double[] informationVolume = new double[normalizedMatrix[0].length];double[] avr = Average(normalizedMatrix);//每列平均值//计算对比强度(标准差)double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}//计算冲突性double[] r = new double[normalizedMatrix[0].length];for(int j=0;j<normalizedMatrix[0].length;j++) {double sum = 0;for(int i=0;i<normalizedMatrix[0].length;i++) {sum += 1 - pearson[i][j];}r[j] = sum;}//计算信息量for(int j=0;j<normalizedMatrix[0].length;j++) {informationVolume[j] = s[j]*r[j];}return informationVolume;}/** * 计算权重 * @param informationVolume 每个指标的信息量 * @return weight 返回每个指标的权重 */public double[] weight(double[] informationVolume) {double[] weight = new double[informationVolume.length];double sum = 0;for(int i=0;i<informationVolume.length;i++) {sum += informationVolume[i];}for(int i=0;i<informationVolume.length;i++) {weight[i] = informationVolume[i]/sum;}return weight;}/** * 改进算法 * @param normalizedMatrix 标准化后的矩阵 * @param pearson 皮尔逊相关系数矩阵 * @param ewm 熵权法求得的指标熵值 * @return */public double[] weight1(double[][] normalizedMatrix,double[][] pearson,double[] ewm) {double[] informationVolume = new double[normalizedMatrix[0].length];double[] avr = Average(normalizedMatrix);//每列平均值double[] weight = new double[normalizedMatrix[0].length];double[] pear = new double[normalizedMatrix[0].length];//计算对比强度(标准差)double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}double total = 0;for(int j=0;j<normalizedMatrix[0].length;j++) {for(int i=0;i<normalizedMatrix[0].length;i++) {pear[j] += Math.abs(pearson[i][j]);}total += ewm[j] + s[j];}for(int j=0;j<normalizedMatrix[0].length;j++) {informationVolume[j] = ((ewm[j] + s[j])*pear[j])/(total + pear[j]);}double sum = 0;for(int i=0;i<informationVolume.length;i++) {sum += informationVolume[i];}for(int i=0;i<informationVolume.length;i++) {weight[i] = informationVolume[i]/sum;}return weight;}}5.2 主类 CRITICmain.javapackage critic;import java.io.IOException;import java.util.Scanner;import Jama.Matrix;import jxl.read.biff.BiffException;import jxl.write.WriteException;public class CRITICmain {public static void main(String[] args) throws IOException, BiffException, WriteException {@SuppressWarnings("resource")Scanner input = new Scanner(System.in);CRITIC critic = new CRITIC();double[][] componentMatrix = critic.read("critic.xls");System.out.println("--------------------原始数据矩阵---------------------");Matrix A1 = new Matrix(componentMatrix);A1.print(8, 3);//critic.matrixoutput(componentMatrix);double[][] normalizedMatrix = critic.normalized(componentMatrix);System.out.println("--------------------标准化数据矩阵---------------------");Matrix A = new Matrix(normalizedMatrix);A.print(8, 5);//critic.matrixoutput(normalizedMatrix);double[][] pearson = critic.correlation(normalizedMatrix);System.out.println("--------------------皮尔逊相关系数矩阵---------------------");Matrix B = new Matrix(pearson);B.print(8, 5);//critic.matrixoutput(pearson);double[] informationVolume = critic.information(normalizedMatrix, pearson);System.out.println("--------------------指标信息承载量---------------------");critic.matrixoutput1(informationVolume);double[] weight = critic.weight(informationVolume);System.out.println("--------------------指标权重---------------------");critic.matrixoutput1(weight);double[] ewm = new double[normalizedMatrix[0].length];//熵权法计算所得指标权重System.out.println("输入用熵权法计算所得指标的熵值:");for(int i=0;i<ewm.length ;i++) {ewm[i] = input.nextDouble();}double[] weight1 = critic.weight1(normalizedMatrix,pearson,ewm);System.out.println("--------------------指标权重(改进)---------------------");critic.matrixoutput1(weight1);}}
本文链接地址:https://www.jiuchutong.com/zhishi/290865.html 转载请保留说明!

上一篇:echarts 定制legend内容,显示和位置(echart设置legend)

下一篇:阿尔卑斯山Cheran峡谷中流淌的河流,法国萨瓦 (© Jean-Philippe Delobelle/Minden)(阿尔卑斯山城市)

  • 小米手表时间不准确怎么调(小米手表时间不对连接手机就好了什么原因)

    小米手表时间不准确怎么调(小米手表时间不对连接手机就好了什么原因)

  • oppo读取应用列表权限怎么关闭(oppo读取应用列表是什么意思)

    oppo读取应用列表权限怎么关闭(oppo读取应用列表是什么意思)

  • 如何给录音添加背景音乐(如何给录音添加图片)

    如何给录音添加背景音乐(如何给录音添加图片)

  • 淘宝的淘菜菜在哪里(淘宝的淘菜菜在哪里发货)

    淘宝的淘菜菜在哪里(淘宝的淘菜菜在哪里发货)

  • 苹果手机掉了可以找回照片吗(苹果手机掉了可以定位找到吗)

    苹果手机掉了可以找回照片吗(苹果手机掉了可以定位找到吗)

  • 手机突然不能语音识别(手机突然不能语音输入要到哪里设置)

    手机突然不能语音识别(手机突然不能语音输入要到哪里设置)

  • 淘宝拍下是什么意思(淘宝拍是什么意思)

    淘宝拍下是什么意思(淘宝拍是什么意思)

  • 华为休眠怎么关(华为关闭休眠)

    华为休眠怎么关(华为关闭休眠)

  • ip40防护等级是什么(ip42防护等级是什么)

    ip40防护等级是什么(ip42防护等级是什么)

  • b类地址的默认子网掩码是(b类地址的默认掩码是几位)

    b类地址的默认子网掩码是(b类地址的默认掩码是几位)

  • 路由器显示unknown(路由器显示无互联网连接是什么意思)

    路由器显示unknown(路由器显示无互联网连接是什么意思)

  • c20空开适合多少w电器(c20空开能带多大功率)

    c20空开适合多少w电器(c20空开能带多大功率)

  • 信息已送达是看到了吗(信息已送达是看不到吗)

    信息已送达是看到了吗(信息已送达是看不到吗)

  • 小米8能用5a充电线充吗(小米8能用5a充电线吗)

    小米8能用5a充电线充吗(小米8能用5a充电线吗)

  • iphone照片恢复(iphone照片恢复免费)

    iphone照片恢复(iphone照片恢复免费)

  • 什么叫wifi直连(wifi直连有什么用处)

    什么叫wifi直连(wifi直连有什么用处)

  • 手机里的话费怎么提现(手机里的话费怎么用)

    手机里的话费怎么提现(手机里的话费怎么用)

  • 仅自己可见的说说怎么公开(仅自己可见的说说转发后别人可以看见吗)

    仅自己可见的说说怎么公开(仅自己可见的说说转发后别人可以看见吗)

  • 苹果11pro max颜色(苹果11pro max颜色价格一样吗)

    苹果11pro max颜色(苹果11pro max颜色价格一样吗)

  • 腾讯青少年模式怎么关闭(腾讯青少年模式时间限制)

    腾讯青少年模式怎么关闭(腾讯青少年模式时间限制)

  • pholzps是什么牌子(phlllps什么品牌)

    pholzps是什么牌子(phlllps什么品牌)

  • 网上发帖子怎么发(网上发帖子怎么发赚钱)

    网上发帖子怎么发(网上发帖子怎么发赚钱)

  • 微信时间错乱如何恢复(微信时间错乱 改不回来)

    微信时间错乱如何恢复(微信时间错乱 改不回来)

  • 机器学习论文源代码浅读:Autoformer

    机器学习论文源代码浅读:Autoformer

  • 2022年终总结:少年不惧岁月长,彼方尚有荣光在。(2022年终总结)

    2022年终总结:少年不惧岁月长,彼方尚有荣光在。(2022年终总结)

  • 怎么算一般纳税人
  • 金税三期怎么合理避税
  • 增值税为10%的有哪些
  • 合伙企业所得税怎么征收
  • 小规模纳税人附加税减免政策2023
  • 小规模季报财务报表怎么填写
  • 6%税点是什么意思
  • 开具红字增值税专用发票是什么意思
  • 加计抵减其他收益汇算清缴填哪里
  • 折扣金额发票
  • 住房公积金的会计处理
  • 普通增值税发票可以抵税吗?
  • 不相关企业之间的关系
  • 所得税退税会计账务怎么处理
  • 税款多交一分钱怎么做分录
  • 发给职工的福利要交个税吗
  • 企业怎么申请无运输工具承运资质
  • 应收款未收到怎么做账
  • 出口押汇与打包押汇区别
  • 自营建造固定资产的账务处理
  • 进项转出滞纳金规定
  • 代开的专票怎么做账?
  • 收据大写要写整吗
  • 计提递延所得税费用会计分录
  • 计提的利息收入交所得税吗
  • 所得税纳税调增调减怎么理解
  • 收购未税矿产品的其他单位,其纳税地点为收购地
  • win10系统共享打印机报错0x0000011b解决办法
  • 债券到期收回本息的会计分录
  • 发代扣代缴手续费个税免
  • 哪个是发票抵扣项目
  • 建筑行业有哪些岗位,从事的要求有哪些
  • 开具增值税专用发票和普通发票的区别
  • 公司登记注册费每年都要交吗
  • 出借和出租包装物的区别
  • 用php编写从大到小排序
  • command对象可以执行sql语句吗
  • 工程施工科目下的间接费用怎么使用
  • openeuler基于
  • 命令行mkdir创建文件夹
  • 免费赠送的产品报关金额
  • 请问如何在
  • mysql触发器在哪里建
  • 筹建期所得税年度申报如何填列
  • 网银转账往来款怎么做账
  • SQL SERVER 2000 9003错误的解决方法(只适用于SQL2000)
  • 期末存货材料成本差异
  • 一般纳税人开具的普票可以抵扣吗
  • 盘亏的设备要进仓库吗
  • 存货跌价准备确认
  • 坏账核算备抵法的优缺点
  • 中标服务费如何赋码
  • 定额发票是否可以盖公章
  • 企业项目贷款所需资料
  • 分页式存储管理中页的大小是可以不相等的
  • mysql数据库迁移方案
  • sqlserver 自动备份所有数据库的SQL
  • mysql 5.7.28安装
  • windows server2008系统弹出今天必须修改密码该怎么处理?
  • windows隐藏文件夹开启
  • ubuntu16.04终端在哪
  • centos gogs
  • QQPCTray.exe是什么进程 QQPCTray.exe文件介绍
  • windows无法打开添加打印机
  • win10系统玩游戏卡
  • linux 查看so
  • linux系统漏洞总结
  • linux卡屏
  • 关于dns的说法错误的是
  • opengl立体模型
  • js拖动图片
  • oracle shell脚本
  • 编写批处理
  • window.parent与window.openner区别介绍
  • 无序列表html
  • 北京社保外埠城镇职工和外埠农村劳动力啥区别
  • 电子税务局登录不上,显示用户名不匹配
  • 电子税务局错误代码
  • 小规模纳税人公司买车能抵多少税
  • 先进单位表彰发言稿
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设