位置: IT常识 - 正文

权重确定方法五:CRITIC权重法(权重值的确定可以依据什么)

编辑:rootadmin
权重确定方法五:CRITIC权重法

推荐整理分享权重确定方法五:CRITIC权重法(权重值的确定可以依据什么),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:权重如何计算举例说明,权重的确定,权重确定方法包含,权重的确定方法主要有,权重的确定方法正确的是什么法,权重的确定方法主要有,权重的确定,权重的确定方法主要有,内容如对您有帮助,希望把文章链接给更多的朋友!

半 是 温 柔 半 是 风 , 一 生 从 容 一 生 花

目录

1.原理介绍

2.步骤详解

2.1 获取数据

2.2 数据标准化

2.3 计算信息承载量

2.4 计算权重

3.案例分析

3.1 数据获取

3.2 数据标准化

3.3 计算相关系数

3.4 计算信息承载量

3.5 计算权重

4.算法改进

5.完整代码

5.1 方法类 CRITIC.java

5.2 主类 CRITICmain.java


1.原理介绍

        通常在确定指标权重时往往更多关注的是数据本身,而数据之间的波动性大小也是一种信息,或是数据之间的相关关系大小,也是一种信息,可利用数据波动性大小或数据相关关系大小计算权重。

        CRITIC权重法是一种基于数据波动性的客观赋权法。其思想在于两项指标,分别是波动性(对比强度)和冲突性(相关性)指标。对比强度使用标准差进行表示,如果数据标准差越大说明波动越大,权重会越高;冲突性使用相关系数进行表示,如果指标之间的相关系数值越大,说明冲突性越小,那么其权重也就越低。权重计算时,对比强度与冲突性指标相乘,并且进行归一化处理,即得到最终的权重。

        CRITIC权重法适用于数据稳定性可视作一种信息,并且分析的指标或因素之间有着一定的关联关系的数据。

2.步骤详解2.1 获取数据

假设现有一组数据,有m个待评价对象,n个评价指标,构成原始数据矩阵X:

2.2 数据标准化

数据标准化的主要目的就是消除量纲影响,使所以数据能用统一的标准去衡量。

对于正向指标:

对于逆向指标:

2.3 计算信息承载量

波动性:

冲突性:

计算冲突性时要用到指标的相关性矩阵,计算公式如下:

 则,冲突性计公式:

权重确定方法五:CRITIC权重法(权重值的确定可以依据什么)

信息量:

2.4 计算权重

3.案例分析

        以下是某医院连续十天内的部分数据,其中某些指标的稳定性是一种信息,而且指标之间本身就可能有着相关性。

编号出院人数入出院诊断符合率治疗有效率平均床位使用率病床周转次数1920.80.520.8662120.730.380.48373680.150.750.28494170.160.970.25505420.090.820.18176200.650.860.88397830.190.670.71858280.590.740.39449930.70.240.14710420.230.690.54673.1 数据获取/** * 从Excel表格读取数据,列为评价指标行为待评价样本 * * 假设有m个待评价样本,n个评价指标 * * @param filepath 表格存储位置 * @return componentMartix 返回原始矩阵 */public double[][] read(String filepath) throws IOException, BiffException,WriteException {//创建输入流InputStream stream = new FileInputStream(filepath);//获取Excel文件对象Workbook rwb = Workbook.getWorkbook(stream);//获取文件的指定工作表 默认的第一个 Sheet sheet = rwb.getSheet("Sheet1"); int rows = sheet.getRows(); int cols = sheet.getColumns(); double[][] componentMatrix = new double[rows][cols];//原始矩阵//row为行for(int i=0;i<sheet.getRows();i++) {for(int j=0;j<sheet.getColumns();j++) {String[] str = new String[sheet.getColumns()]; Cell cell = null; cell = sheet.getCell(j,i); str[j] = cell.getContents(); componentMatrix[i][j] = Double.valueOf(str[j]);} }return componentMatrix;//返回原始矩阵}

 输出:

3.2 数据标准化/** * 数据标准化处理,消除量纲影响 * @param componentMatrix 输入原始矩阵 * @return normalizedMatrix 返回标准化后的矩阵 */public double[][] normalized(double[][] componentMatrix) {double[][] normalizedMatrix = new double[componentMatrix.length][componentMatrix[0].length];List<Integer> neg = new ArrayList<Integer>();//存储逆向指标所在列double[] max = Max(componentMatrix);double[] min = Min(componentMatrix);int a;for(int i=0; i < componentMatrix.length; i++) {for(int j=0; j < componentMatrix[0].length; j++) {normalizedMatrix[i][j] = (componentMatrix[i][j] - min[j])/(max[j] - min[j]);}}System.out.println("是否有逆向指标?(越小越优型指标)若有输入1,若无输入2");a = input.nextInt();if(a ==1 ) {System.out.println("输入逆向指标所在列(以“/”结尾):");while(!input.hasNext("/")) {neg.add(Integer.valueOf(input.nextInt()));}for(int i=0; i < componentMatrix.length; i++) {for(int j=0; j < neg.size(); j++) {normalizedMatrix[i][neg.get(j)] = (max[neg.get(j)]-componentMatrix[i][neg.get(j)])/(max[neg.get(j)] - min[neg.get(j)]);}}}return normalizedMatrix;}

输出:

3.3 计算相关系数/** * 计算相关系数矩阵 * @param normalizedMatrix 标准化后数据 * @return pearson 皮尔逊相关系数矩阵 */public double[][] correlation(double[][] normalizedMatrix){double[][] pearson = new double[normalizedMatrix[0].length][normalizedMatrix[0].length];//皮尔逊相关系数矩阵double[] avr = Average(normalizedMatrix);//每列平均值double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}double[][] cxy = new double[normalizedMatrix[0].length][normalizedMatrix[0].length];for(int j=0;j<normalizedMatrix[0].length;j++) {for(int k=0;k<normalizedMatrix[0].length;k++) {double sum = 0;for(int i=0;i<normalizedMatrix.length;i++) {sum += (normalizedMatrix[i][j] - avr[j])*(normalizedMatrix[i][k] - avr[k]);}cxy[j][k] = sum/(pearson.length - 1);pearson[j][k] = cxy[j][k]/(s[j]*s[k]);}}return pearson;}

输出:

3.4 计算信息承载量/** * 计算每个指标的信息承载量 * @param normalizedMatrix 标准化后的矩阵 * @param pearson 皮尔逊相关系数矩阵 * @return informationVolume 每个指标的信息承载量 */public double[] information(double[][] normalizedMatrix,double[][] pearson) {double[] informationVolume = new double[normalizedMatrix[0].length];double[] avr = Average(normalizedMatrix);//每列平均值//计算对比强度(标准差)double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}//计算冲突性double[] r = new double[normalizedMatrix[0].length];for(int j=0;j<normalizedMatrix[0].length;j++) {double sum = 0;for(int i=0;i<normalizedMatrix[0].length;i++) {sum += 1 - pearson[i][j];}r[j] = sum;}//计算信息量for(int j=0;j<normalizedMatrix[0].length;j++) {informationVolume[j] = s[j]*r[j];}return informationVolume;}

输出:

3.5 计算权重/** * 计算权重 * @param informationVolume 每个指标的信息量 * @return weight 返回每个指标的权重 */public double[] weight(double[] informationVolume) {double[] weight = new double[informationVolume.length];double sum = 0;for(int i=0;i<informationVolume.length;i++) {sum += informationVolume[i];}for(int i=0;i<informationVolume.length;i++) {weight[i] = informationVolume[i]/sum;}return weight;}

输出:

4.算法改进

        从上述计算步骤可以看出 CRITIC 法存在以下可以 改进和完善的地方 :(1)相关系数有正有负,对于绝对值相同的相关系数其反映指 标间的相关性程度大小应是一样的 ,因此在反映指标 之间的对比强度时用 (1−|rij|) 代替原方法中的 (1−rij) 更 适合 ;(2)CRITIC 法虽能有效考虑指标数据间的相关性(冲突性)和对比强度 (波动性),但未考虑指标数据间的离散程度。因此,需要对 CRITIC 法进行改进,以使改进的 CRITIC 法能够充分考虑指标数据本身的三大属性。

        改进后的计算公式如下:

        其中代表用熵权法计算得到的指标熵值(不会计算的可以点击阅读文章“权重计算方法二:熵权法(EWM)”),为对比强度,为第i个指标与第j个指标的相关系数。

/** * 改进算法 * @param normalizedMatrix 标准化后的矩阵 * @param pearson 皮尔逊相关系数矩阵 * @param ewm 熵权法求得的指标熵值 * @return */public double[] weight1(double[][] normalizedMatrix,double[][] pearson,double[] ewm) {double[] informationVolume = new double[normalizedMatrix[0].length];double[] avr = Average(normalizedMatrix);//每列平均值double[] weight = new double[normalizedMatrix[0].length];double[] pear = new double[normalizedMatrix[0].length];//计算对比强度(标准差)double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}double total = 0;for(int j=0;j<normalizedMatrix[0].length;j++) {for(int i=0;i<normalizedMatrix[0].length;i++) {pear[j] += Math.abs(pearson[i][j]);}total += ewm[j] + s[j];}for(int j=0;j<normalizedMatrix[0].length;j++) {informationVolume[j] = ((ewm[j] + s[j])*pear[j])/(total + pear[j]);}double sum = 0;for(int i=0;i<informationVolume.length;i++) {sum += informationVolume[i];}for(int i=0;i<informationVolume.length;i++) {weight[i] = informationVolume[i]/sum;}return weight;}

输出:

 改进前后结果对比:

        通过观察可以发现改进后得到的权重基本与改进前得到的权重一致,但部分指标改进前后权重有较大变化,但基本保持在5%以内。

5.完整代码5.1 方法类 CRITIC.javapackage critic;import java.io.FileInputStream;import java.io.IOException;import java.io.InputStream;import java.util.ArrayList;import java.util.List;import java.util.Scanner;import jxl.Cell;import jxl.Sheet;import jxl.Workbook;import jxl.read.biff.BiffException;import jxl.write.WriteException;public class CRITIC {Scanner input = new Scanner(System.in);//矩阵每列最大值public double[] Max(double[][] m) {double max[] = new double[m[0].length];for(int j=0;j < m[0].length;j++) {max[j] = m[0][j];for(int i=0;i < m.length;i++) {if(m[i][j] >= max[j]) {max[j] = m[i][j];}}}return max;}//矩阵每列最小值public double[] Min(double[][] m) {double min[] = new double[m[0].length];for(int j=0;j < m[0].length;j++) {min[j] = m[0][j];for(int i=0;i < m.length;i++) {if(m[i][j] <= min[j]) {min[j] = m[i][j];}}}return min;}//矩阵每列平均值public double[] Average(double[][] m) {double avr[] = new double[m[0].length];for(int j=0;j < m[0].length;j++) {double sum = 0;for(int i=0;i < m.length;i++) {sum += m[i][j];}avr[j] = sum/m.length;}return avr;}//输出二维矩阵public void matrixoutput(double[][] x) {for(int i=0;i<x.length;i++) {for(int j=0;j<x[0].length;j++) {System.out.print(x[i][j]+" ");}System.out.println();}}//输出一维矩阵public void matrixoutput1(double[] x) {for(int i=0;i<x.length;i++) {System.out.print(String.format("%.8f\t", x[i]));}System.out.println();}/** * 从Excel表格读取数据,列为评价指标行为待评价样本 * * 假设有m个待评价样本,n个评价指标 * * @param filepath 表格存储位置 * @return componentMartix 返回原始矩阵 */public double[][] read(String filepath) throws IOException, BiffException,WriteException {//创建输入流InputStream stream = new FileInputStream(filepath);//获取Excel文件对象Workbook rwb = Workbook.getWorkbook(stream);//获取文件的指定工作表 默认的第一个 Sheet sheet = rwb.getSheet("Sheet1"); int rows = sheet.getRows(); int cols = sheet.getColumns(); double[][] componentMatrix = new double[rows][cols];//原始矩阵//row为行for(int i=0;i<sheet.getRows();i++) {for(int j=0;j<sheet.getColumns();j++) {String[] str = new String[sheet.getColumns()]; Cell cell = null; cell = sheet.getCell(j,i); str[j] = cell.getContents(); componentMatrix[i][j] = Double.valueOf(str[j]);} }return componentMatrix;//返回原始矩阵}/** * 数据标准化处理,消除量纲影响 * @param componentMatrix 输入原始矩阵 * @return normalizedMatrix 返回标准化后的矩阵 */public double[][] normalized(double[][] componentMatrix) {double[][] normalizedMatrix = new double[componentMatrix.length][componentMatrix[0].length];List<Integer> neg = new ArrayList<Integer>();//存储逆向指标所在列double[] max = Max(componentMatrix);double[] min = Min(componentMatrix);int a;for(int i=0; i < componentMatrix.length; i++) {for(int j=0; j < componentMatrix[0].length; j++) {normalizedMatrix[i][j] = (componentMatrix[i][j] - min[j])/(max[j] - min[j]);}}System.out.println("是否有逆向指标?(越小越优型指标)若有输入1,若无输入2");a = input.nextInt();if(a ==1 ) {System.out.println("输入逆向指标所在列(以“/”结尾):");while(!input.hasNext("/")) {neg.add(Integer.valueOf(input.nextInt()));}for(int i=0; i < componentMatrix.length; i++) {for(int j=0; j < neg.size(); j++) {normalizedMatrix[i][neg.get(j)] = (max[neg.get(j)]-componentMatrix[i][neg.get(j)])/(max[neg.get(j)] - min[neg.get(j)]);}}}return normalizedMatrix;}/** * 计算相关系数矩阵 * @param normalizedMatrix 标准化后数据 * @return pearson 皮尔逊相关系数矩阵 */public double[][] correlation(double[][] normalizedMatrix){double[][] pearson = new double[normalizedMatrix[0].length][normalizedMatrix[0].length];//皮尔逊相关系数矩阵double[] avr = Average(normalizedMatrix);//每列平均值double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}double[][] cxy = new double[normalizedMatrix[0].length][normalizedMatrix[0].length];for(int j=0;j<normalizedMatrix[0].length;j++) {for(int k=0;k<normalizedMatrix[0].length;k++) {double sum = 0;for(int i=0;i<normalizedMatrix.length;i++) {sum += (normalizedMatrix[i][j] - avr[j])*(normalizedMatrix[i][k] - avr[k]);}cxy[j][k] = sum/(pearson.length - 1);pearson[j][k] = cxy[j][k]/(s[j]*s[k]);}}return pearson;}/** * 计算每个指标的信息承载量 * @param normalizedMatrix 标准化后的矩阵 * @param pearson 皮尔逊相关系数矩阵 * @return informationVolume 每个指标的信息承载量 */public double[] information(double[][] normalizedMatrix,double[][] pearson) {double[] informationVolume = new double[normalizedMatrix[0].length];double[] avr = Average(normalizedMatrix);//每列平均值//计算对比强度(标准差)double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}//计算冲突性double[] r = new double[normalizedMatrix[0].length];for(int j=0;j<normalizedMatrix[0].length;j++) {double sum = 0;for(int i=0;i<normalizedMatrix[0].length;i++) {sum += 1 - pearson[i][j];}r[j] = sum;}//计算信息量for(int j=0;j<normalizedMatrix[0].length;j++) {informationVolume[j] = s[j]*r[j];}return informationVolume;}/** * 计算权重 * @param informationVolume 每个指标的信息量 * @return weight 返回每个指标的权重 */public double[] weight(double[] informationVolume) {double[] weight = new double[informationVolume.length];double sum = 0;for(int i=0;i<informationVolume.length;i++) {sum += informationVolume[i];}for(int i=0;i<informationVolume.length;i++) {weight[i] = informationVolume[i]/sum;}return weight;}/** * 改进算法 * @param normalizedMatrix 标准化后的矩阵 * @param pearson 皮尔逊相关系数矩阵 * @param ewm 熵权法求得的指标熵值 * @return */public double[] weight1(double[][] normalizedMatrix,double[][] pearson,double[] ewm) {double[] informationVolume = new double[normalizedMatrix[0].length];double[] avr = Average(normalizedMatrix);//每列平均值double[] weight = new double[normalizedMatrix[0].length];double[] pear = new double[normalizedMatrix[0].length];//计算对比强度(标准差)double[] s = new double[normalizedMatrix[0].length];for(int j=0;j < normalizedMatrix[0].length;j++) {double sum = 0; for(int i=0;i < normalizedMatrix.length;i++){sum += Math.pow(normalizedMatrix[i][j] - avr[j], 2);} s[j] = Math.sqrt(sum/(normalizedMatrix[0].length - 1));}double total = 0;for(int j=0;j<normalizedMatrix[0].length;j++) {for(int i=0;i<normalizedMatrix[0].length;i++) {pear[j] += Math.abs(pearson[i][j]);}total += ewm[j] + s[j];}for(int j=0;j<normalizedMatrix[0].length;j++) {informationVolume[j] = ((ewm[j] + s[j])*pear[j])/(total + pear[j]);}double sum = 0;for(int i=0;i<informationVolume.length;i++) {sum += informationVolume[i];}for(int i=0;i<informationVolume.length;i++) {weight[i] = informationVolume[i]/sum;}return weight;}}5.2 主类 CRITICmain.javapackage critic;import java.io.IOException;import java.util.Scanner;import Jama.Matrix;import jxl.read.biff.BiffException;import jxl.write.WriteException;public class CRITICmain {public static void main(String[] args) throws IOException, BiffException, WriteException {@SuppressWarnings("resource")Scanner input = new Scanner(System.in);CRITIC critic = new CRITIC();double[][] componentMatrix = critic.read("critic.xls");System.out.println("--------------------原始数据矩阵---------------------");Matrix A1 = new Matrix(componentMatrix);A1.print(8, 3);//critic.matrixoutput(componentMatrix);double[][] normalizedMatrix = critic.normalized(componentMatrix);System.out.println("--------------------标准化数据矩阵---------------------");Matrix A = new Matrix(normalizedMatrix);A.print(8, 5);//critic.matrixoutput(normalizedMatrix);double[][] pearson = critic.correlation(normalizedMatrix);System.out.println("--------------------皮尔逊相关系数矩阵---------------------");Matrix B = new Matrix(pearson);B.print(8, 5);//critic.matrixoutput(pearson);double[] informationVolume = critic.information(normalizedMatrix, pearson);System.out.println("--------------------指标信息承载量---------------------");critic.matrixoutput1(informationVolume);double[] weight = critic.weight(informationVolume);System.out.println("--------------------指标权重---------------------");critic.matrixoutput1(weight);double[] ewm = new double[normalizedMatrix[0].length];//熵权法计算所得指标权重System.out.println("输入用熵权法计算所得指标的熵值:");for(int i=0;i<ewm.length ;i++) {ewm[i] = input.nextDouble();}double[] weight1 = critic.weight1(normalizedMatrix,pearson,ewm);System.out.println("--------------------指标权重(改进)---------------------");critic.matrixoutput1(weight1);}}
本文链接地址:https://www.jiuchutong.com/zhishi/290865.html 转载请保留说明!

上一篇:echarts 定制legend内容,显示和位置(echart设置legend)

下一篇:阿尔卑斯山Cheran峡谷中流淌的河流,法国萨瓦 (© Jean-Philippe Delobelle/Minden)(阿尔卑斯山城市)

  • 国税纳税标准
  • 货物运输印花税减免
  • 月末只有进项税需要把转出未交增值税转到未交增值税
  • 外贸企业指的是什么
  • 外出经营涉税事项报告
  • 普通发票扣税
  • 每月增值税怎么做账
  • 转让名额协议
  • 案例分析房产税会计分录怎么写?
  • 单位付款方式
  • 现在地税发票还要交税吗
  • 定额发票验旧怎么操作
  • 建筑行业不管是什么行业
  • 总账科目和明细科目有哪些
  • 小规模纳税人增值税减免
  • 固定资产用于免税项目 进项税处理
  • 出口企业内销商怎么做
  • 销售合作分成会计分录
  • ps4运行windows
  • win10网络带宽
  • 对公账户转私人账户手续费多少
  • mplugin.exe是什么
  • 投资中间人要担什么责任
  • git简明教程
  • 模型怎么部署
  • 智慧工厂协同管控下载
  • vue前端常见面试题
  • 前端脚本开发
  • 对方开具红字发票,我方怎么查询
  • 应交税费如何调整
  • 注册劳务派遣公司需要验资吗
  • 季度报是什么时候报
  • idea快速生成lambda
  • 如何用织梦在本地搭建网站
  • 小规模纳税人税率2023年是多少
  • 劳务公司是怎么运作的
  • 年末计提哪些科目
  • sql中循环语句怎么写
  • 个税是怎么扣除的?
  • 出口退免税的税种包括增值税消费税企业所得税
  • 营改增试点纳税人提供技术转让
  • 不能计入固定资产原值的有
  • 个体工商户分配所得
  • 融资租出固定资产的账务处理
  • 银行卡里的钱怎么转出来
  • 免于填报什么意思
  • 银行退票业务
  • c# mysql实例
  • mysql索引数据结构有哪些
  • innodb怎么实现
  • window7 32位系统
  • Win10中文输入法不能用
  • Win10预览版怎么变回正式版
  • magento开发教程
  • centos打包文件
  • javaweb物流管理系统源码
  • unity3D游戏开发
  • jQuery中select与datalist制作下拉菜单时的区别浅析
  • linux随机数生成1到100
  • python编程字符串中删除数字
  • JQuery实现Ajax加载图片的方法
  • js动态给table添加行
  • unity3d官方
  • java中的多态性
  • 火狐浏览器不支持弹出对话框操作
  • thinkphp withjoin
  • 国际货运怎么代理
  • 地税电子税务局漏报要去大厅吗
  • 新电子税务局使用方法
  • 契税房屋套数如何计算
  • 如何查询税控盘口令和密码
  • 移动手机话费代扣
  • 车没交车船税上路什么后果
  • 劳务报酬所得个人所得税计算方法
  • 新疆国税网
  • 辽宁国税征期日历
  • 18个税种征税范围
  • 公车补贴计入工资吗
  • 云南2021高考改革
  • 薰衣草商业价值
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设