位置: IT常识 - 正文

使用python进行傅里叶FFT 频谱分析(python进行傅立叶变换)

编辑:rootadmin
使用python进行傅里叶FFT 频谱分析 目录 一、一些关键概念的引入 1.1.离散傅里叶变换(DFT) 1.2快速傅里叶变换(FFT) 1.3.采样频率以及采样定率1.4.如何理解采样定理 二、使用scipy包实现快速傅里叶变换 2.1.产生原始信号——原始信号是三个正弦波的叠加2.2.快速傅里叶变换2.3.FFT的原始频谱2.4.将振幅谱进行归一化和取半处理三、完整代码

推荐整理分享使用python进行傅里叶FFT 频谱分析(python进行傅立叶变换),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:python进行快速傅里叶变换,f'python,pythonfor怎么用,python fuzzywuzzy,python进行傅立叶变换,python 快速傅里叶,python fuzzing,python fuzz,内容如对您有帮助,希望把文章链接给更多的朋友!

一、一些关键概念的引入

1.1、离散傅里叶变换(DFT)

    离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,经过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。可是它的致命缺点是:计算量太大,时间复杂度过高,当采样点数过高的时候,计算缓慢,由此出现了DFT的快速实现,即下面的快速傅里叶变换FFT。

1.2、快速傅里叶变换(FFT)

       计算量更小的离散傅里叶的一种实现方法。快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的

1.3、采样频率以及采样定理

采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率的倒数是采样周期或者叫做采样时间,它是采样之间的时间间隔。通俗的讲采样频率是指计算机每秒钟采集多少个信号样本。

采样定理 ,又称香农采样定理,奈奎斯特采样定理,是信息论,特别是通信与信号处理学科中的一个重要基本结论。采样定理指出,若是信号是带限的,而且采样频率高于信号带宽的两倍,那么,原来的连续信号能够从采样样本中彻底重建出来。

定理的具体表述为:在进行模拟/数字信号的转换过程当中,当采样频率fs大于信号中最高频率fmax的2倍时,即  fs>2*fmax

采样以后的数字信号完整地保留了原始信号中的信息,通常实际应用中保证采样频率为信号最高频率的2.56~4倍;

1.4、如何理解采样定理?

      在对连续信号进行离散化的过程当中,不免会损失不少信息,就拿一个简单地正弦波而言,若是我1秒内就选择一个点,很显然,损失的信号太多了,光着一个点我根本不知道这个正弦信号究竟是什么样子的,天然也没有办法根据这一个采样点进行正弦波的还原,很明显,我采样的点越密集,那越接近原来的正弦波原始的样子,天然损失的信息越少,越方便还原正弦波。故而

       采样定理说明采样频率与信号频率之间的关系,是连续信号离散化的基本依据。 它为采样率创建了一个足够的条件,该采样率容许离散采样序列从有限带宽的连续时间信号中捕获全部信息。

二、使用scipy包实现快速傅里叶变换

      本节不会说明FFT的底层实现,只介绍scipy中fft的函数接口以及使用的一些细节。

2.1、产生原始信号——原始信号是三个正弦波的叠加

import numpy as npfrom scipy.fftpack import fft,ifftimport matplotlib.pyplot as pltfrom matplotlib.pylab import mplmpl.rcParams['font.sans-serif'] = ['SimHei'] #显示中文mpl.rcParams['axes.unicode_minus']=False #显示负号#采样点选择1400个,由于设置的信号频率份量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,因此这里设置采样频率为1400赫兹(即一秒内有1400个采样点,同样意思的)x=np.linspace(0,1,1400) #设置须要采样的信号,频率份量有200,400和600y=7*np.sin(2*np.pi*200*x) + 4*np.sin(2*np.pi*400*x)+6*np.sin(2*np.pi*600*x)plt.figure()plt.plot(x,y) plt.title('原始波形')plt.figure()plt.plot(x[0:50],y[0:50]) plt.title('原始部分波形(前50组样本)')plt.show()

这里原始信号的三个正弦波的频率分别为,200Hz、400Hz、600Hz,最大频率为600赫兹。根据采样定理,fs至少是600赫兹的2倍,这里选择1400赫兹,即在一秒内选择1400个点。

原始的函数图像以下:

由图可见,因为采样点太过密集,无法查看,切片前100组数据:

二、快速傅里叶变换

其实scipy和numpy同样,实现FFT很是简单,仅仅是一句话而已,函数接口以下:

from scipy.fftpack import fft,ifftfrom numpy import fft,ifft# 其中fft表示快速傅里叶变换,ifft表示其逆变换。具体实现以下:fft_y=fft(y) #快速傅里叶变换print(len(fft_y))print(fft_y[0:5])'''运行结果以下:1400[-4.18864943e-12+0.j 9.66210986e-05-0.04305756j 3.86508070e-04-0.08611996j 8.69732036e-04-0.12919206j 1.54641157e-03-0.17227871j]'''

咱们发现如下几个特色:

使用python进行傅里叶FFT 频谱分析(python进行傅立叶变换)

(1)变换以后的结果数据长度和原始采样信号是同样的

(2)每个变换以后的值是一个复数,为a+bj的形式,那这个复数是什么意思呢?

     复数a+bj在坐标系中表示为(a,b),故而复数具备模和角度,快速傅里叶变换具备

      “振幅谱”,“相位谱”,它其实就是经过对快速傅里叶变换获得的复数结果进一步求出来的,

      那这个直接变换后的结果是否是就是我须要的,固然是须要的,在FFT中,获得的结果是复数,

(3)FFT获得的复数的模(即绝对值)就是对应的“振幅谱”,复数所对应的角度,就是所对应的“相位谱”,如今能够画图了。

三、FFT的原始频谱

N=1400x = np.arange(N) # 频率个数abs_y=np.abs(fft_y) # 取复数的绝对值,即复数的模(双边频谱)angle_y=np.angle(fft_y) #取复数的角度plt.figure()plt.plot(x,abs_y) plt.title('双边振幅谱(未归一化)')plt.figure()plt.plot(x,angle_y) plt.title('双边相位谱(未归一化)')plt.show()

显示结果以下:

 

注意:咱们在此处仅仅考虑“振幅谱”,再也不考虑相位谱。

咱们发现,振幅谱的纵坐标很大,并且具备对称性,这是怎么一回事呢?

关键:关于振幅值很大的解释以及解决办法——归一化和取一半处理

好比有一个信号以下:

Y=A1+A2*cos(2πω2+φ2)+A3*cos(2πω3+φ3)+A4*cos(2πω4+φ4)

通过FFT以后,获得的“振幅图”中,

第一个峰值(频率位置)的模是A1的N倍,N为采样点,本例中为N=1400,此例中没有,由于信号没有常数项A1

第二个峰值(频率位置)的模是A2的N/2倍,N为采样点,

第三个峰值(频率位置)的模是A3的N/2倍,N为采样点,

第四个峰值(频率位置)的模是A4的N/2倍,N为采样点,

依次下去......

考虑到数量级较大,通常进行归一化处理,既然第一个峰值是A1的N倍,那么将每个振幅值都除以N便可

FFT具备对称性,通常只须要用N的一半,前半部分便可。

四、将振幅谱进行归一化和取半处理

先进行归一化

normalization_y=abs_y/N #归一化处理(双边频谱)plt.figure()plt.plot(x,normalization_y,'g')plt.title('双边频谱(归一化)',fontsize=9,color='green')plt.show()

结果为:

如今咱们发现,振幅谱的数量级不大了,变得合理了,接下来进行取半处理:

half_x = x[range(int(N/2))] #取一半区间normalization_half_y = normalization_y[range(int(N/2))] #因为对称性,只取一半区间(单边频谱)plt.figure()plt.plot(half_x,normalization_half_y,'b')plt.title('单边频谱(归一化)',fontsize=9,color='blue')plt.show()这就是咱们最终的结果,须要的“振幅谱”。3、完整代码import numpy as npfrom scipy.fftpack import fft,ifftimport matplotlib.pyplot as pltfrom matplotlib.pylab import mplmpl.rcParams['font.sans-serif'] = ['SimHei'] #显示中文mpl.rcParams['axes.unicode_minus']=False #显示负号#采样点选择1400个,由于设置的信号频率份量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,因此这里设置采样频率为1400赫兹(即一秒内有1400个采样点,同样意思的)x=np.linspace(0,1,1400) #设置须要采样的信号,频率份量有200,400和600y=7*np.sin(2*np.pi*200*x) + 5*np.sin(2*np.pi*400*x)+3*np.sin(2*np.pi*600*x)fft_y=fft(y) #快速傅里叶变换N=1400x = np.arange(N) # 频率个数half_x = x[range(int(N/2))] #取一半区间abs_y=np.abs(fft_y) # 取复数的绝对值,即复数的模(双边频谱)angle_y=np.angle(fft_y) #取复数的角度normalization_y=abs_y/N #归一化处理(双边频谱) normalization_half_y = normalization_y[range(int(N/2))] #因为对称性,只取一半区间(单边频谱)plt.subplot(231)plt.plot(x,y) plt.title('原始波形')plt.subplot(232)plt.plot(x,fft_y,'black')plt.title('双边振幅谱(未求振幅绝对值)',fontsize=9,color='black') plt.subplot(233)plt.plot(x,abs_y,'r')plt.title('双边振幅谱(未归一化)',fontsize=9,color='red') plt.subplot(234)plt.plot(x,angle_y,'violet')plt.title('双边相位谱(未归一化)',fontsize=9,color='violet')plt.subplot(235)plt.plot(x,normalization_y,'g')plt.title('双边振幅谱(归一化)',fontsize=9,color='green')plt.subplot(236)plt.plot(half_x,normalization_half_y,'blue')plt.title('单边振幅谱(归一化)',fontsize=9,color='blue')plt.show()

本文链接地址:https://www.jiuchutong.com/zhishi/292403.html 转载请保留说明!

上一篇:皮丘拉湖畔的乌代布尔城市宫殿,印度 (© Chaiyun Damkaew/Getty Images)

下一篇:日落时分正在迁徙的斑纹角马群,肯尼亚马赛马拉野生动物保护区 (© Denis-Huot/Minden Pictures)(日落之前是什么时辰)

  • 红米k40怎么设置背部轻敲(红米k40怎么设置流量显示)

    红米k40怎么设置背部轻敲(红米k40怎么设置流量显示)

  • 华为p40是两个卡槽吗(华为p40两个卡怎么切换网络)

    华为p40是两个卡槽吗(华为p40两个卡怎么切换网络)

  • 咋样恢复微信以前的删除记录(如何恢复微信)

    咋样恢复微信以前的删除记录(如何恢复微信)

  • 什么是压排屏幕(压排屏幕是什么意思啊)

    什么是压排屏幕(压排屏幕是什么意思啊)

  • 怎么看自己被几个人设为特别关心(怎么看自己被几个人设置特别关心)

    怎么看自己被几个人设为特别关心(怎么看自己被几个人设置特别关心)

  • 微信群如何在群里踢出一个人(微信群如何在群聊中显示)

    微信群如何在群里踢出一个人(微信群如何在群聊中显示)

  • vivoiqooz1指纹在哪(vivoiqz1指纹解锁)

    vivoiqooz1指纹在哪(vivoiqz1指纹解锁)

  • 手机查qq好友最近上线时间(手机查qq好友最多几个)

    手机查qq好友最近上线时间(手机查qq好友最多几个)

  • iphonexsmax防水级别(iphonexsmax防水性能怎么样)

    iphonexsmax防水级别(iphonexsmax防水性能怎么样)

  • 显示器一个坏点要退吗(显示器一个坏点能忍吗)

    显示器一个坏点要退吗(显示器一个坏点能忍吗)

  • Word页眉线条宽度怎么设置(word页眉线条宽度)

    Word页眉线条宽度怎么设置(word页眉线条宽度)

  • 苹果8p贴了很多膜都有白边(苹果8p贴膜总是有白边怎么办)

    苹果8p贴了很多膜都有白边(苹果8p贴膜总是有白边怎么办)

  • 8.4英寸平板电脑多大(8.4英寸平板电脑有多大)

    8.4英寸平板电脑多大(8.4英寸平板电脑有多大)

  • 二维码检票是什么意思(二维码检票是什么情况)

    二维码检票是什么意思(二维码检票是什么情况)

  • 奇遇2和2s有什么区别(奇遇2比2s贵在哪里)

    奇遇2和2s有什么区别(奇遇2比2s贵在哪里)

  • windows是安卓系统吗(安卓系统属于微软吗)

    windows是安卓系统吗(安卓系统属于微软吗)

  • 爱奇艺的扫码登录在哪里(爱奇艺的扫码登录在哪里弄)

    爱奇艺的扫码登录在哪里(爱奇艺的扫码登录在哪里弄)

  • 小米6x支不支持18w快充(小米6x支持vulkan吗)

    小米6x支不支持18w快充(小米6x支持vulkan吗)

  • ipad迷你1和2的区别(苹果ipadmini1和2的区别)

    ipad迷你1和2的区别(苹果ipadmini1和2的区别)

  • 爱奇艺属于腾讯软件吗(爱奇艺属于腾讯的吗)

    爱奇艺属于腾讯软件吗(爱奇艺属于腾讯的吗)

  • word竖排文字居中并列(word竖排文字居中设置)

    word竖排文字居中并列(word竖排文字居中设置)

  • vga显示器有音频接口吗(vga显示器有音频线吗)

    vga显示器有音频接口吗(vga显示器有音频线吗)

  • 抖音的照片怎么跟音乐卡节奏(抖音的照片怎么保存)

    抖音的照片怎么跟音乐卡节奏(抖音的照片怎么保存)

  • 荣耀20语音助手在哪里(荣耀20语音助手怎么一喊就出来)

    荣耀20语音助手在哪里(荣耀20语音助手怎么一喊就出来)

  • 8p处理器是多少(苹果8p处理器多少)

    8p处理器是多少(苹果8p处理器多少)

  • 怎么卸载打印机驱动(怎么卸载打印机驱动在电脑上)

    怎么卸载打印机驱动(怎么卸载打印机驱动在电脑上)

  • Windows 7系统备份方式是什么?(win 7系统如何备份)

    Windows 7系统备份方式是什么?(win 7系统如何备份)

  • 个体户定额超了怎么收费
  • 什么情况下税务会监管
  • 电子税务局怎么登录
  • 现金流量补充表的编制
  • 增值税开票内容货物及应税劳务服务名称都有哪些
  • 新企业会计准则什么时候实施的
  • 为企业担保
  • 政府性搬迁补偿收入的税务处理
  • 企业所得税表样
  • 以前年度社保计提出错了怎么调整
  • 税务局返还的个税手续费税率
  • 补记固定资产
  • 开票系统服务费全额抵扣会计分录怎么做
  • 国税的应交税款在地税的财务报表上怎么填?
  • 制造型企业采购
  • 不动产抵扣涉及净值,这里的净值是否扣除减值准备,是否扣除不动产改变用途当月的折旧额?
  • 销售返利如何做分录
  • 实收金额比应收金额多
  • 暂估在建工程会计科目
  • 毛利率与净利率的差额
  • linux 设置默认路由
  • 基准收益率是
  • 怎么写会计凭证
  • 小公司做帐
  • 重置组策略命令
  • php实现的中秋博饼游戏之绘制骰子图案功能示例
  • Win11/10 Surface App 新增支持自动检测 Surface Slim Pen 1 手写笔
  • 和平之城
  • 公司员工借款怎么做账
  • 以前年度收入如何确认收入
  • 金融业贷款损失多少
  • vue导出word文档打开报错,内容有问题
  • 债权投资 科目
  • 前端框架源码
  • php5.4安装教程
  • php demo
  • 逻辑回归模型
  • python编程100例
  • php实现定时器
  • 企业收到土地回收怎么办
  • 增值税纳税申报表怎么填
  • 预缴增值税所需成本
  • 扶贫款分红怎么做账
  • 固定资产原值增加当月计提折旧吗
  • sql server 2008怎么使用sql语句
  • 申报纳税的步骤
  • 税务局核定税种流程
  • 保险补偿多久到账
  • 深圳市企业稳岗补贴标准
  • 销售退回会计分录
  • 一年发一次工资好不好
  • 利息收入如何做分录
  • 取得税控服务费会计分录
  • 固定资产折旧残值率的最新规定2021
  • 农行网银只有一张卡吗
  • 成本会计和管理会计哪个好
  • win8还能用吗
  • debian启用ssh
  • centos6.6网卡配置
  • 32位/64位Win10系统开机后桌面图标自动排列的解决办法
  • 会声会影win7怎么兼容
  • linux不能识别u盘
  • win7文件夹选项在哪里打开
  • Linux系统怎么重启网卡
  • win7突然变卡顿怎么回事
  • kernel headers not found for target kernel
  • unity 链表
  • opengl帧缓冲
  • bat批处理命令大全
  • js实现隔行变色
  • js setTimeout opener的用法示例详解
  • 以下关于js说法错误的是
  • nodejs怎么使用
  • 在jquery中fadein
  • jquery console.log
  • 大学的python选修课好学吗
  • 安徽省国家税务局通用定额发票
  • 消防咨询电话24小时
  • 重庆税务登记证在哪里办理
  • 安徽公务员流程各个阶段时间
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设