位置: IT常识 - 正文

使用python进行傅里叶FFT 频谱分析(python进行傅立叶变换)

编辑:rootadmin
使用python进行傅里叶FFT 频谱分析 目录 一、一些关键概念的引入 1.1.离散傅里叶变换(DFT) 1.2快速傅里叶变换(FFT) 1.3.采样频率以及采样定率1.4.如何理解采样定理 二、使用scipy包实现快速傅里叶变换 2.1.产生原始信号——原始信号是三个正弦波的叠加2.2.快速傅里叶变换2.3.FFT的原始频谱2.4.将振幅谱进行归一化和取半处理三、完整代码

推荐整理分享使用python进行傅里叶FFT 频谱分析(python进行傅立叶变换),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:python进行快速傅里叶变换,f'python,pythonfor怎么用,python fuzzywuzzy,python进行傅立叶变换,python 快速傅里叶,python fuzzing,python fuzz,内容如对您有帮助,希望把文章链接给更多的朋友!

一、一些关键概念的引入

1.1、离散傅里叶变换(DFT)

    离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,经过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。可是它的致命缺点是:计算量太大,时间复杂度过高,当采样点数过高的时候,计算缓慢,由此出现了DFT的快速实现,即下面的快速傅里叶变换FFT。

1.2、快速傅里叶变换(FFT)

       计算量更小的离散傅里叶的一种实现方法。快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的

1.3、采样频率以及采样定理

采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率的倒数是采样周期或者叫做采样时间,它是采样之间的时间间隔。通俗的讲采样频率是指计算机每秒钟采集多少个信号样本。

采样定理 ,又称香农采样定理,奈奎斯特采样定理,是信息论,特别是通信与信号处理学科中的一个重要基本结论。采样定理指出,若是信号是带限的,而且采样频率高于信号带宽的两倍,那么,原来的连续信号能够从采样样本中彻底重建出来。

定理的具体表述为:在进行模拟/数字信号的转换过程当中,当采样频率fs大于信号中最高频率fmax的2倍时,即  fs>2*fmax

采样以后的数字信号完整地保留了原始信号中的信息,通常实际应用中保证采样频率为信号最高频率的2.56~4倍;

1.4、如何理解采样定理?

      在对连续信号进行离散化的过程当中,不免会损失不少信息,就拿一个简单地正弦波而言,若是我1秒内就选择一个点,很显然,损失的信号太多了,光着一个点我根本不知道这个正弦信号究竟是什么样子的,天然也没有办法根据这一个采样点进行正弦波的还原,很明显,我采样的点越密集,那越接近原来的正弦波原始的样子,天然损失的信息越少,越方便还原正弦波。故而

       采样定理说明采样频率与信号频率之间的关系,是连续信号离散化的基本依据。 它为采样率创建了一个足够的条件,该采样率容许离散采样序列从有限带宽的连续时间信号中捕获全部信息。

二、使用scipy包实现快速傅里叶变换

      本节不会说明FFT的底层实现,只介绍scipy中fft的函数接口以及使用的一些细节。

2.1、产生原始信号——原始信号是三个正弦波的叠加

import numpy as npfrom scipy.fftpack import fft,ifftimport matplotlib.pyplot as pltfrom matplotlib.pylab import mplmpl.rcParams['font.sans-serif'] = ['SimHei'] #显示中文mpl.rcParams['axes.unicode_minus']=False #显示负号#采样点选择1400个,由于设置的信号频率份量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,因此这里设置采样频率为1400赫兹(即一秒内有1400个采样点,同样意思的)x=np.linspace(0,1,1400) #设置须要采样的信号,频率份量有200,400和600y=7*np.sin(2*np.pi*200*x) + 4*np.sin(2*np.pi*400*x)+6*np.sin(2*np.pi*600*x)plt.figure()plt.plot(x,y) plt.title('原始波形')plt.figure()plt.plot(x[0:50],y[0:50]) plt.title('原始部分波形(前50组样本)')plt.show()

这里原始信号的三个正弦波的频率分别为,200Hz、400Hz、600Hz,最大频率为600赫兹。根据采样定理,fs至少是600赫兹的2倍,这里选择1400赫兹,即在一秒内选择1400个点。

原始的函数图像以下:

由图可见,因为采样点太过密集,无法查看,切片前100组数据:

二、快速傅里叶变换

其实scipy和numpy同样,实现FFT很是简单,仅仅是一句话而已,函数接口以下:

from scipy.fftpack import fft,ifftfrom numpy import fft,ifft# 其中fft表示快速傅里叶变换,ifft表示其逆变换。具体实现以下:fft_y=fft(y) #快速傅里叶变换print(len(fft_y))print(fft_y[0:5])'''运行结果以下:1400[-4.18864943e-12+0.j 9.66210986e-05-0.04305756j 3.86508070e-04-0.08611996j 8.69732036e-04-0.12919206j 1.54641157e-03-0.17227871j]'''

咱们发现如下几个特色:

使用python进行傅里叶FFT 频谱分析(python进行傅立叶变换)

(1)变换以后的结果数据长度和原始采样信号是同样的

(2)每个变换以后的值是一个复数,为a+bj的形式,那这个复数是什么意思呢?

     复数a+bj在坐标系中表示为(a,b),故而复数具备模和角度,快速傅里叶变换具备

      “振幅谱”,“相位谱”,它其实就是经过对快速傅里叶变换获得的复数结果进一步求出来的,

      那这个直接变换后的结果是否是就是我须要的,固然是须要的,在FFT中,获得的结果是复数,

(3)FFT获得的复数的模(即绝对值)就是对应的“振幅谱”,复数所对应的角度,就是所对应的“相位谱”,如今能够画图了。

三、FFT的原始频谱

N=1400x = np.arange(N) # 频率个数abs_y=np.abs(fft_y) # 取复数的绝对值,即复数的模(双边频谱)angle_y=np.angle(fft_y) #取复数的角度plt.figure()plt.plot(x,abs_y) plt.title('双边振幅谱(未归一化)')plt.figure()plt.plot(x,angle_y) plt.title('双边相位谱(未归一化)')plt.show()

显示结果以下:

 

注意:咱们在此处仅仅考虑“振幅谱”,再也不考虑相位谱。

咱们发现,振幅谱的纵坐标很大,并且具备对称性,这是怎么一回事呢?

关键:关于振幅值很大的解释以及解决办法——归一化和取一半处理

好比有一个信号以下:

Y=A1+A2*cos(2πω2+φ2)+A3*cos(2πω3+φ3)+A4*cos(2πω4+φ4)

通过FFT以后,获得的“振幅图”中,

第一个峰值(频率位置)的模是A1的N倍,N为采样点,本例中为N=1400,此例中没有,由于信号没有常数项A1

第二个峰值(频率位置)的模是A2的N/2倍,N为采样点,

第三个峰值(频率位置)的模是A3的N/2倍,N为采样点,

第四个峰值(频率位置)的模是A4的N/2倍,N为采样点,

依次下去......

考虑到数量级较大,通常进行归一化处理,既然第一个峰值是A1的N倍,那么将每个振幅值都除以N便可

FFT具备对称性,通常只须要用N的一半,前半部分便可。

四、将振幅谱进行归一化和取半处理

先进行归一化

normalization_y=abs_y/N #归一化处理(双边频谱)plt.figure()plt.plot(x,normalization_y,'g')plt.title('双边频谱(归一化)',fontsize=9,color='green')plt.show()

结果为:

如今咱们发现,振幅谱的数量级不大了,变得合理了,接下来进行取半处理:

half_x = x[range(int(N/2))] #取一半区间normalization_half_y = normalization_y[range(int(N/2))] #因为对称性,只取一半区间(单边频谱)plt.figure()plt.plot(half_x,normalization_half_y,'b')plt.title('单边频谱(归一化)',fontsize=9,color='blue')plt.show()这就是咱们最终的结果,须要的“振幅谱”。3、完整代码import numpy as npfrom scipy.fftpack import fft,ifftimport matplotlib.pyplot as pltfrom matplotlib.pylab import mplmpl.rcParams['font.sans-serif'] = ['SimHei'] #显示中文mpl.rcParams['axes.unicode_minus']=False #显示负号#采样点选择1400个,由于设置的信号频率份量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,因此这里设置采样频率为1400赫兹(即一秒内有1400个采样点,同样意思的)x=np.linspace(0,1,1400) #设置须要采样的信号,频率份量有200,400和600y=7*np.sin(2*np.pi*200*x) + 5*np.sin(2*np.pi*400*x)+3*np.sin(2*np.pi*600*x)fft_y=fft(y) #快速傅里叶变换N=1400x = np.arange(N) # 频率个数half_x = x[range(int(N/2))] #取一半区间abs_y=np.abs(fft_y) # 取复数的绝对值,即复数的模(双边频谱)angle_y=np.angle(fft_y) #取复数的角度normalization_y=abs_y/N #归一化处理(双边频谱) normalization_half_y = normalization_y[range(int(N/2))] #因为对称性,只取一半区间(单边频谱)plt.subplot(231)plt.plot(x,y) plt.title('原始波形')plt.subplot(232)plt.plot(x,fft_y,'black')plt.title('双边振幅谱(未求振幅绝对值)',fontsize=9,color='black') plt.subplot(233)plt.plot(x,abs_y,'r')plt.title('双边振幅谱(未归一化)',fontsize=9,color='red') plt.subplot(234)plt.plot(x,angle_y,'violet')plt.title('双边相位谱(未归一化)',fontsize=9,color='violet')plt.subplot(235)plt.plot(x,normalization_y,'g')plt.title('双边振幅谱(归一化)',fontsize=9,color='green')plt.subplot(236)plt.plot(half_x,normalization_half_y,'blue')plt.title('单边振幅谱(归一化)',fontsize=9,color='blue')plt.show()

本文链接地址:https://www.jiuchutong.com/zhishi/292403.html 转载请保留说明!

上一篇:皮丘拉湖畔的乌代布尔城市宫殿,印度 (© Chaiyun Damkaew/Getty Images)

下一篇:日落时分正在迁徙的斑纹角马群,肯尼亚马赛马拉野生动物保护区 (© Denis-Huot/Minden Pictures)(日落之前是什么时辰)

  • 无票收入小规模怎么报增值税
  • 小规模纳税人能开专票吗
  • 资本公积转增资本的账务处理
  • 减免税款抵税怎么做分录
  • 固定资产十几万可以直接入费用吗
  • 职工的补助金需交税吗
  • 增票普票税额是否可以抵扣吗
  • 进项税未抵扣完怎么结转
  • 工程款预付账款的账务处理
  • 小规模无票收入怎么做账
  • 将自产的产品用于对外投资
  • 工业总产值怎么计算公式
  • 投资款打到个人账户算诈骗吗
  • 发票超过标准可以报销吗
  • 企业取得的土地使用权用于出租或增值目的时
  • 找私人贴现怎么做账
  • 基金赎回手续费怎么计算
  • 公司筹建期间的劳务费怎么入账
  • 小规模纳税人没有达到起征点怎么申报附加
  • 会计行业新技术
  • 进项税未抵扣会计分录
  • 权益法核算的投资收益要做递延所得税吗
  • 股权和债权有无区别
  • 分批供货付款方式
  • 生产型企业出口退税会计分录
  • js map foreach遍历
  • educoder实现折半查找
  • php 自动加载
  • 企业销售折扣在计征所得税时如何处理
  • 工程材料费发票没拿到是否能预提费用
  • 软件研发支出计入什么科目
  • vuecli项目实战
  • 帮人开票怎么计算税点金额
  • thinkphp模板引擎原理
  • vue动态绑定背景图
  • 管家婆中已经过账的进货单怎么删除?
  • 代建工程开发成本核算应设置的会计科目是( )
  • 企业增值税发票管理办法
  • 增值税与消费税中关于包装物押金规定的异同点
  • 企业官网用什么系统
  • 安装和使用蓄能器应注意哪些问题
  • 进项税大于销项税怎么交税
  • 商品进销差价是流动资产吗
  • 企业出租专利技术收取的租金不得确认为收入对吗
  • 阶段性减免企业社保费实施政策对象
  • 工程项目成本核算
  • 企业与股东之间的关系,也是企业与投资者之间的关系
  • 其他综合收益核算的内容及会计处理
  • 小规模纳税人系统查询
  • 车辆违章处理有什么规定
  • 个税抵扣项目是什么
  • 建账的基本要求
  • 建账固定资产的期初科目是什么
  • mysql事务视图
  • window怎么操作
  • 微软windows8.1
  • fedora19
  • 清除桌面应用软件
  • windows更新后一直在欢迎界面
  • centos基本操作命令
  • win7运行老游戏方法
  • win7磁盘管理怎么显示隐藏分区
  • win10查看电脑配置显卡
  • Win10预览版桌面图标和任务栏不翼而飞怎么办?
  • input submit、button和回车键提交数据详解
  • python rgb转cmyk
  • 对new functionName()定义一个函数的理解
  • node.js最主要的特点有哪3个?
  • javascript typeof id==='string'?document.getElementById(id):id解释 原创
  • 相同目录
  • PreferenceActivity、PreferenceFragment使用
  • android四大组件的作用
  • 如何搭建应用服务器
  • Python中MySQL数据迁移到MongoDB脚本的方法
  • string和stringbuffer创建后都可以修改
  • 陕西职工医保申请流程
  • 钢管租赁可以开建筑材料吗
  • 开个小型外卖店要多少钱
  • 提高增值税税率是什么意思
  • 巾帼文明岗主题内容
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设