位置: IT常识 - 正文

基于Pytorch实现的EcapaTdnn声纹识别模型(pytorch基础)

编辑:rootadmin
基于Pytorch实现的EcapaTdnn声纹识别模型 前言

推荐整理分享基于Pytorch实现的EcapaTdnn声纹识别模型(pytorch基础),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:pytorch教程,pytorch基础,pytorch csdn,pytorch csdn,pytorch functional,pytorch csdn,pytorch 简单例子,pytorch例程,内容如对您有帮助,希望把文章链接给更多的朋友!

本项目使用了EcapaTdnn模型实现的声纹识别,不排除以后会支持更多模型,同时本项目也支持了多种数据预处理方法,损失函数参考了人脸识别项目的做法PaddlePaddle-MobileFaceNets ,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接。

源码地址:VoiceprintRecognition-Pytorch(V1)

使用环境:

Python 3.7PaddlePaddle 1.10.2模型下载模型预处理方法数据集类别数量分类准确率两两对比准确率模型下载地址EcapaTdnnmelspectrogram中文语音语料数据集32420.96820.99982点击下载EcapaTdnnspectrogram中文语音语料数据集32420.96900.99982点击下载EcapaTdnnmelspectrogram更大的数据集63550.91660.99991点击下载EcapaTdnnspectrogram更大的数据集63550.91540.99990点击下载EcapaTdnnmelspectrogram超大的数据集137180.91790.99995点击下载EcapaTdnnspectrogram超大的数据集137180.93440.99995点击下载安装环境安装Pytorch的GPU版本,如果已经安装过Pytorch,无需再次安装。pip install torch==1.10.2安装其他依赖库,命令如下,注意librosa的版本是0.9.1,旧版本的梅尔频谱计算方式不一样。pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/

注意: libsora和pyaudio安装出错解决办法

创建数据

本教程笔者使用的是中文语音语料数据集 ,这个数据集一共有3242个人的语音数据,有1130000+条语音数据,下载之前要全部解压数据集。如果读者有其他更好的数据集,可以混合在一起使用,但最好是要用python的工具模块aukit处理音频,降噪和去除静音。

首先是创建一个数据列表,数据列表的格式为<语音文件路径\t语音分类标签>,创建这个列表主要是方便之后的读取,也是方便读取使用其他的语音数据集,语音分类标签是指说话人的唯一ID,不同的语音数据集,可以通过编写对应的生成数据列表的函数,把这些数据集都写在同一个数据列表中。

在create_data.py写下以下代码,因为中文语音语料数据集 这个数据集是mp3格式的,作者发现这种格式读取速度很慢,所以笔者把全部的mp3格式的音频转换为wav格式,在创建数据列表之后,可能有些数据的是错误的,所以我们要检查一下,将错误的数据删除。执行下面程序完成数据准备。

python create_data.py基于Pytorch实现的EcapaTdnn声纹识别模型(pytorch基础)

执行上面的程序之后,会生成以下的数据格式,如果要自定义数据,参考如下数据列表,前面是音频的相对路径,后面的是该音频对应的说话人的标签,就跟分类一样。

dataset/zhvoice/zhmagicdata/5_895/5_895_20170614203758.wav3238dataset/zhvoice/zhmagicdata/5_895/5_895_20170614214007.wav3238dataset/zhvoice/zhmagicdata/5_941/5_941_20170613151344.wav3239dataset/zhvoice/zhmagicdata/5_941/5_941_20170614221329.wav3239dataset/zhvoice/zhmagicdata/5_941/5_941_20170616153308.wav3239dataset/zhvoice/zhmagicdata/5_968/5_968_20170614162657.wav3240dataset/zhvoice/zhmagicdata/5_968/5_968_20170622194003.wav3240dataset/zhvoice/zhmagicdata/5_968/5_968_20170707200554.wav3240dataset/zhvoice/zhmagicdata/5_970/5_970_20170616000122.wav3241训练模型

使用train.py训练模型,本项目支持多个音频预处理方式,通过参数feature_method可以指定,melspectrogram为梅尔频谱,spectrogram为声谱图。通过参数augment_conf_path可以指定数据增强方式。训练过程中,会使用VisualDL保存训练日志,通过启动VisualDL可以随时查看训练结果,启动命令visualdl --logdir=log --host 0.0.0.0

# 单卡训练python train.py# 多卡训练python train.py --gpus=0,1

训练输出日志:

----------- Configuration Arguments -----------augment_conf_path: configs/augment.ymlbatch_size: 64feature_method: melspectrogramgpus: 0learning_rate: 0.001num_epoch: 30num_speakers: 3242num_workers: 4pretrained_model: Noneresume: Nonesave_model_dir: models/test_list_path: dataset/test_list.txttrain_list_path: dataset/train_list.txtuse_model: ecapa_tdnn------------------------------------------------······[2022-04-24 09:25:10.481272] Train epoch [0/30], batch: [7500/8290], loss: 9.03724, accuracy: 0.33252, lr: 0.00100000, eta: 14:58:26[2022-04-24 09:25:32.909873] Train epoch [0/30], batch: [7600/8290], loss: 9.00004, accuracy: 0.33600, lr: 0.00100000, eta: 15:09:07[2022-04-24 09:25:55.321806] Train epoch [0/30], batch: [7700/8290], loss: 8.96284, accuracy: 0.33950, lr: 0.00100000, eta: 15:13:13[2022-04-24 09:26:17.836304] Train epoch [0/30], batch: [7800/8290], loss: 8.92626, accuracy: 0.34294, lr: 0.00100000, eta: 14:57:15[2022-04-24 09:26:40.306800] Train epoch [0/30], batch: [7900/8290], loss: 8.88968, accuracy: 0.34638, lr: 0.00100000, eta: 14:51:06[2022-04-24 09:27:02.778450] Train epoch [0/30], batch: [8000/8290], loss: 8.85430, accuracy: 0.34964, lr: 0.00100000, eta: 15:00:36[2022-04-24 09:27:25.240278] Train epoch [0/30], batch: [8100/8290], loss: 8.81858, accuracy: 0.35294, lr: 0.00100000, eta: 14:51:58[2022-04-24 09:27:47.690570] Train epoch [0/30], batch: [8200/8290], loss: 8.78368, accuracy: 0.35630, lr: 0.00100000, eta: 14:55:41======================================================================[2022-04-24 09:28:12.084404] Test 0, accuracy: 0.76057 time: 0:00:04======================================================================[2022-04-24 09:28:12.909394] Train epoch [1/30], batch: [0/8290], loss: 5.83753, accuracy: 0.68750, lr: 0.00099453, eta: 2 days, 3:47:48[2022-04-24 09:28:35.346418] Train epoch [1/30], batch: [100/8290], loss: 5.80430, accuracy: 0.64527, lr: 0.00099453, eta: 15:00:01[2022-04-24 09:28:57.873686] Train epoch [1/30], batch: [200/8290], loss: 5.78946, accuracy: 0.64218, lr: 0.00099453, eta: 14:46:39······

VisualDL页面:

数据增强

本项目提供了几种音频增强操作,分布是随机裁剪,添加背景噪声,调节语速,调节音量,和SpecAugment。其中后面4种增加的参数可以在configs/augment.yml修改,参数prob是指定该增强操作的概率,如果不想使用该增强方式,可以设置为0。要主要的是,添加背景噪声需要把多个噪声音频文件存放在dataset/noise,否则会跳过噪声增强

noise: min_snr_dB: 10 max_snr_dB: 30 noise_path: "dataset/noise" prob: 0.5评估模型

训练结束之后会保存预测模型,我们用预测模型来预测测试集中的音频特征,然后使用音频特征进行两两对比,阈值从0到1,步长为0.01进行控制,找到最佳的阈值并计算准确率。

python eval.py

输出类似如下:

----------- Configuration Arguments -----------feature_method: melspectrogramlist_path: dataset/test_list.txtnum_speakers: 3242resume: models/use_model: ecapa_tdnn------------------------------------------------W0425 08:27:32.057426 17654 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2W0425 08:27:32.065165 17654 device_context.cc:465] device: 0, cuDNN Version: 7.6.成功加载模型参数和优化方法参数:models/ecapa_tdnn/model.pdparams开始提取全部的音频特征...167it [00:15, 10.70it/s]分类准确率为:0.9608开始两两对比音频特征...100%|███████████████████████████| 5332/5332 [00:05<00:00, 1027.83it/s]找出最优的阈值和对应的准确率...100%|███████████████████████████| 100/100 [00:06<00:00, 16.54it/s]当阈值为0.58, 两两对比准确率最大,准确率为:0.99980声纹对比

下面开始实现声纹对比,创建infer_contrast.py程序,编写infer()函数,在编写模型的时候,模型是有两个输出的,第一个是模型的分类输出,第二个是音频特征输出。所以在这里要输出的是音频的特征值,有了音频的特征值就可以做声纹识别了。我们输入两个语音,通过预测函数获取他们的特征数据,使用这个特征数据可以求他们的对角余弦值,得到的结果可以作为他们相识度。对于这个相识度的阈值threshold,读者可以根据自己项目的准确度要求进行修改。

python infer_contrast.py --audio_path1=audio/a_1.wav --audio_path2=audio/b_2.wav

输出类似如下:

----------- Configuration Arguments -----------audio_path1: audio/a_1.wavaudio_path2: audio/b_2.wavfeature_method: melspectrogramresume: models/threshold: 0.5use_model: ecapa_tdnn------------------------------------------------W0425 08:29:10.006249 21121 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2W0425 08:29:10.008555 21121 device_context.cc:465] device: 0, cuDNN Version: 7.6.成功加载模型参数和优化方法参数:models/ecapa_tdnn/model.pdparamsaudio/a_1.wav 和 audio/b_2.wav 不是同一个人,相似度为:-0.09565544128417969声纹识别

在上面的声纹对比的基础上,我们创建infer_recognition.py实现声纹识别。同样是使用上面声纹对比的infer()预测函数,通过这两个同样获取语音的特征数据。 不同的是笔者增加了load_audio_db()和register(),以及recognition(),第一个函数是加载声纹库中的语音数据,这些音频就是相当于已经注册的用户,他们注册的语音数据会存放在这里,如果有用户需要通过声纹登录,就需要拿到用户的语音和语音库中的语音进行声纹对比,如果对比成功,那就相当于登录成功并且获取用户注册时的信息数据。第二个函数register()其实就是把录音保存在声纹库中,同时获取该音频的特征添加到待对比的数据特征中。最后recognition()函数中,这个函数就是将输入的语音和语音库中的语音一一对比。 有了上面的声纹识别的函数,读者可以根据自己项目的需求完成声纹识别的方式,例如笔者下面提供的是通过录音来完成声纹识别。首先必须要加载语音库中的语音,语音库文件夹为audio_db,然后用户回车后录音3秒钟,然后程序会自动录音,并使用录音到的音频进行声纹识别,去匹配语音库中的语音,获取用户的信息。通过这样方式,读者也可以修改成通过服务请求的方式完成声纹识别,例如提供一个API供APP调用,用户在APP上通过声纹登录时,把录音到的语音发送到后端完成声纹识别,再把结果返回给APP,前提是用户已经使用语音注册,并成功把语音数据存放在audio_db文件夹中。

python infer_recognition.py

输出类似如下:

----------- Configuration Arguments -----------audio_db: audio_dbfeature_method: melspectrogramresume: models/threshold: 0.5use_model: ecapa_tdnn------------------------------------------------W0425 08:30:13.257884 23889 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2W0425 08:30:13.260191 23889 device_context.cc:465] device: 0, cuDNN Version: 7.6.成功加载模型参数和优化方法参数:models/ecapa_tdnn/model.pdparamsLoaded 沙瑞金 audio.Loaded 李达康 audio.请选择功能,0为注册音频到声纹库,1为执行声纹识别:0按下回车键开机录音,录音3秒中:开始录音......录音已结束!请输入该音频用户的名称:夜雨飘零请选择功能,0为注册音频到声纹库,1为执行声纹识别:1按下回车键开机录音,录音3秒中:开始录音......录音已结束!识别说话的为:夜雨飘零,相似度为:0.920434其他版本Tensorflow:VoiceprintRecognition-TensorflowPaddlePaddle:VoiceprintRecognition-PaddlePaddleKeras:VoiceprintRecognition-Keras参考资料https://github.com/PaddlePaddle/PaddleSpeechhttps://github.com/yeyupiaoling/PaddlePaddle-MobileFaceNetshttps://github.com/yeyupiaoling/PPASR
本文链接地址:https://www.jiuchutong.com/zhishi/292944.html 转载请保留说明!

上一篇:高德地图 API,点击地图标记获取自定义标记 (Marker) 中的信息(高德地图api是什么意思)

下一篇:塔霍河上空的银河,西班牙蒙弗拉圭国家公园 (© Miguel Angel Muñoz Ruiz/Cavan Images)(塔河流域)

  • 多多视频点赞的视频在哪(多多视频点赞的视频怎么删除)

    多多视频点赞的视频在哪(多多视频点赞的视频怎么删除)

  • 荣耀x10max卡槽在哪里(荣耀x10卡2在哪里装)

    荣耀x10max卡槽在哪里(荣耀x10卡2在哪里装)

  • 苹果平板1566是哪年款的(苹果平板1566是什么型号的)

    苹果平板1566是哪年款的(苹果平板1566是什么型号的)

  • 拼多多闪电退货可以关掉吗(拼多多闪电退货是什么意思)

    拼多多闪电退货可以关掉吗(拼多多闪电退货是什么意思)

  • 微信怎么人脸识别(微信怎么人脸识别解锁)

    微信怎么人脸识别(微信怎么人脸识别解锁)

  • tittl00是什么手机(titcl00)

    tittl00是什么手机(titcl00)

  • 闲鱼上打包出是什么意思(闲鱼打包出是什么意思)

    闲鱼上打包出是什么意思(闲鱼打包出是什么意思)

  • 微视能发多长时间视频(微视能发多久视频)

    微视能发多长时间视频(微视能发多久视频)

  • 苹果手机放语音总黑屏(苹果手机放语音时突然断断续续的)

    苹果手机放语音总黑屏(苹果手机放语音时突然断断续续的)

  • 华为线上和线下质量区别(华为线上和线下的销量区别)

    华为线上和线下质量区别(华为线上和线下的销量区别)

  • opporeno3pro与荣耀v30pro的区别(opporeno3pro与荣耀30)

    opporeno3pro与荣耀v30pro的区别(opporeno3pro与荣耀30)

  • 微控制器的基本结构(微控制器的基本结构包括)

    微控制器的基本结构(微控制器的基本结构包括)

  • 如何防止oled屏幕烧屏(怎么防止oled屏幕老化)

    如何防止oled屏幕烧屏(怎么防止oled屏幕老化)

  • 为什么抖音发不了私信(为什么抖音发不了相册图片)

    为什么抖音发不了私信(为什么抖音发不了相册图片)

  • 电脑怎么关机步骤(电脑怎么关机步骤英语版)

    电脑怎么关机步骤(电脑怎么关机步骤英语版)

  • 华为p30pro几个扬声器(华为p30pro用的是什么扬声器)

    华为p30pro几个扬声器(华为p30pro用的是什么扬声器)

  • 华为碎屏险在哪里查看(华为碎屏险在哪里买划算?)

    华为碎屏险在哪里查看(华为碎屏险在哪里买划算?)

  • 7p支持5g吗(iphone7p支持5g网络吗)

    7p支持5g吗(iphone7p支持5g网络吗)

  • 短信封了如何恢复(短信封了怎么解封)

    短信封了如何恢复(短信封了怎么解封)

  • 菜鸟裹裹如何收费(菜鸟裹裹如何收益)

    菜鸟裹裹如何收费(菜鸟裹裹如何收益)

  • Win10系统强制进入恢复模式的方法(win10开机强制进入)

    Win10系统强制进入恢复模式的方法(win10开机强制进入)

  • 邓弗里斯和加洛韦的甜心修道院,苏格兰 (© Westend61/Getty Images)(邓弗里斯什么水平)

    邓弗里斯和加洛韦的甜心修道院,苏格兰 (© Westend61/Getty Images)(邓弗里斯什么水平)

  • 全网独家首发|极致版YOLOv7改进大提升(推荐)网络配置文件仅24层!更清晰更方便更快的改进YOLOv7网络模型(全网首发是什么意思)

    全网独家首发|极致版YOLOv7改进大提升(推荐)网络配置文件仅24层!更清晰更方便更快的改进YOLOv7网络模型(全网首发是什么意思)

  • mysql key分区是什么(mysql分区实现)

    mysql key分区是什么(mysql分区实现)

  • c语言中全局变量的使用(c语言中全局变量)

    c语言中全局变量的使用(c语言中全局变量)

  • 待抵扣进项税的账务处理
  • 个税所得税清缴
  • 借款利息抵扣土增
  • 签三方协议需要什么资料
  • 固定资产报废电脑
  • 坏账准备的账务处理4步
  • 小规模装饰工程税率
  • 完税凭证和发票一起打印
  • 建筑业营改增的主要内容
  • 公司支付宝扣的钱去哪了
  • 居民企业只就其境内全部所得纳税
  • 固定基金怎么算
  • 采购运输管理系统
  • 设备租赁公司购进设备怎么做账
  • 新成立公司注资流程
  • 事业单位的出纳要承担的责任是什么
  • 发票抬头写个人有效吗
  • 代发农民工工资承诺书
  • 业务招待费在企业所得税税前扣除的标准是什么?
  • 农产品加计扣除政策2023最新
  • 企业接受非现金资产投资的账务处理
  • 海外代付属于外债吗
  • 资源税可能计入
  • 审计报告报备流程
  • 发票上不小心印上作废两个字怎么办
  • 三星笔记使用攻略
  • 651错误是怎么回事
  • win7系统内存不足怎么解决
  • 在建工程领用原材料需要进项税转出吗
  • 赠与合同任意撤销与法定撤销的区别
  • php ftp上传文件
  • 季节性用工政策
  • vue如何预加载图片
  • 国外供应商如何审核
  • 未分配利润为负的原因
  • thinkphp登录
  • 存货捐赠视同销售的会计分录怎么做?
  • thinkphp yii
  • php数组中某个元素出现的个数
  • python stream模块
  • 安装cuda和cudnn
  • rc远程桌面
  • 跨境电商企业要进入某个国家的市场 必须先做的工作是
  • 出口退税退运费的税吗
  • python中如何创建文件
  • 织梦cms怎么样
  • 织梦DedeCMS默认文件夹重命名
  • 增值税抵扣比例是多少
  • 企业的利润分配包括哪些
  • 应收账款的会计要素
  • 自用房产税计入什么科目
  • 公司给员工转公司
  • 自己开发建造的房屋
  • 挂靠经营的会计处理是?
  • 认证系统维护费可以全额抵扣吗
  • 内账外账用一个云盘可以吗
  • 低值易耗品有哪些种类
  • 注册表修改后如何生效
  • linux的tar命令详解
  • 安装操作系统win10
  • winxp怎么做系统
  • windows7家长控制
  • win8怎么一开机就进入桌面
  • win7系统计算机管理打不开
  • win8适用的pr
  • linux怎么禁用用户
  • js类的实现
  • jquery的show和hide
  • shell产生随机字符串
  • cocos设置锚点
  • cocos2048
  • Android 水平居中
  • 编写高质量代码改善JAVA程序的151个建议
  • 你应该知道的2000个地理常识
  • 事件委托jq
  • android的中文
  • 浅谈新时代劳动教育答案
  • 三方协议开票流程
  • 南京政务服务中心
  • 平安银行股份有限公司临沂分行
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设