位置: IT常识 - 正文

Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进(pytorch如何学)

编辑:rootadmin
Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进 Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进

目录

Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进

前言

一、NMS非极大值抑制算法

二、Hard-NMS非极大值代码

三、DIOU-NMS

 四、soft-NMS

前言

推荐整理分享Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进(pytorch如何学),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:pytorch如何学,pytorch learning rate,pytorch如何学,pytorch metric learning,pytorch learning rate,pytorch learning rate,pytorch metric learning,pytorch metric learning,内容如对您有帮助,希望把文章链接给更多的朋友!

在目标检测的预测阶段时,会输出许多候选的anchor box,其中有很多是明显重叠的预测边界框都围绕着同一个目标,这时候我就可以使用NMS来合并同一目标的类似边界框,或者说是保留这些边界框中最好的一个。

如果对IOU等知识不了解的可以看我上篇博客Pytorch机器学习(五)——目标检测中的损失函数(l2,IOU,GIOU,DIOU, CIOU)

一、NMS非极大值抑制算法

我们先看一下NMS的直观理解,左图为两个ground truth的bbox,右图为我自己模拟网络输出的预测框。

 而下图则是我使用Pytorch官方提供的NMS实现的非极大值抑制,可以看到经过NMS后预测框保留了效果最好的,去除了冗余的预测框。

 

 下面来讲讲NMS算法的流程,其实也是十分简单的

        一.从所有候选框中选取置信度最高的预测边界框B1作为基准,然后将所有与B1的IOU超过预定阈值的其他边界框移除。

(这时所有边界框中B1为置信度最高的边界框且没有和其太过相似的边界框——非极大值置信度的边界框被抑制了)

        二.从所有候选框中选取置信度第二高的边界框B2作为一个基准,将所有与B2的IOU超过预定阈值的其他边界框移除。

        三.重复上述操作,直到所有预测框都被当做基准——这时候没有一对边界框过于相似

二、Hard-NMS非极大值代码Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进(pytorch如何学)

在YOLOV5的源码当中,作者是直接调用了Pytorch官方的NMS的API

在general.py中的non_max_suppression函数中

"""其中boxes为Nx4的tensor,N为框的数量,4则为x1 y1 x2 y2socres为N维的tensor,表示每个框的置信度iou_thres则为上面算法中的IOU阈值返回值为一个去除了过于相似框后的,根据置信度降序排列的列表,我们就可以根据此列表输出预测框"""i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS

为了便于后续其他NMS的改进,这里我们也自己写一个NMS算法,这里借鉴了沐神的代码b站链接,大家可以直接在YOLOV5中把上面的torchvision.ops.nms更改为下面的NMS函数

def NMS(boxes, scores, iou_thres, GIoU=False, DIoU=False, CIoU=False): """ :param boxes: (Tensor[N, 4])): are expected to be in ``(x1, y1, x2, y2) :param scores: (Tensor[N]): scores for each one of the boxes :param iou_thres: discards all overlapping boxes with IoU > iou_threshold :return:keep (Tensor): int64 tensor with the indices of the elements that have been kept by NMS, sorted in decreasing order of scores """ # 按conf从大到小排序 B = torch.argsort(scores, dim=-1, descending=True) keep = [] while B.numel() > 0: # 取出置信度最高的 index = B[0] keep.append(index) if B.numel() == 1: break # 计算iou,根据需求可选择GIOU,DIOU,CIOU iou = bbox_iou(boxes[index, :], boxes[B[1:], :], GIoU=GIoU, DIoU=DIoU, CIoU=CIoU) # 找到符合阈值的下标 inds = torch.nonzero(iou <= iou_thres).reshape(-1) B = B[inds + 1] return torch.tensor(keep)

这里的计算IOU的函数——bbox_iou则是直接引用了YOLOV5中的代码,其简洁的集成了对与GIOU,DIOU,CIOU的计算。

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps iou = inter / union if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / ((1 + eps) - iou + v) return iou - (rho2 / c2 + v * alpha) # CIoU else: # GIoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU else: return iou # IoU三、DIOU-NMS

其实DIOU-NMS就是把我上面说的NMS算法中的IOU阈值改为DIOU,将NMS代码中的DIOU设置为True即可。

根据DIOU的论文,如果只是单纯的使用NMS,即是使用IOU作为阈值去筛掉其他预测框时,当两个物体过于接近时,很有可能另外一个物体的预测框就被滤除了。

就像下图中的摩托。使用DIOU-NMS可以一定程度上提升对于靠近的物体的检测。

 四、soft-NMS

网上还有一种soft-NMS的算法,其思想就是传统的NMS,如果只通过IOU值就将其他的框直接去掉,有可能会不妥,于是就引入了soft-NMS。

具体流程就是我们把NMS算法中去除其他边界框改成,修改其他边界框的置信度。

以下引一个博主的图

 其中的f()函数,现在都是使用的高斯函数

si即为置信度,M为当前最大置信度的边界框,bi为其他边界框

网上对此的效果看法也是褒贬不一,我自己也没有试过,但从直觉来说,我个人觉得效果不会有很大的提升,如果感兴趣的可以自己试一试。

本文链接地址:https://www.jiuchutong.com/zhishi/293071.html 转载请保留说明!

上一篇:浏览器:跨域及解决方法(前端解决浏览器跨域问题)

下一篇:网站百度统计被恶意刷广告的处理方法(百度统计网址)

  • 水利建设基金按照增值税征收
  • 临时用工费账务怎么处理
  • 个体户定额多少不用交税
  • 个人社保信息变更
  • 如何开小加工厂
  • 调试费含税吗
  • 个税属于会计中的什么科目
  • 城镇土地使用税暂行条例
  • 签了合同后又要收额外费用
  • 公司美元账户收到美元要交税吗
  • 委托加工合同如何标注多个地址
  • 营改增后在建工程转让应缴纳税费有哪些
  • 发票复印件能报账吗
  • 企业交的房产税在哪打印税单
  • 代开专票退票流程及说明
  • 代开专票地税没交怎么办?
  • 收据做账税局认嘛
  • 待认证进项税额是什么情况下用的
  • 个税验证不通过怎么办
  • 怎么看是不是小叶紫檀手串
  • 职工福利费支出计入什么科目
  • 工资年终奖金扣多少税
  • 利息保障倍数能反映企业偿债能力吗
  • 客户收集软件
  • 工程建设期间的借款利息
  • chrom无法访问
  • 鼠标怎么设置为右键功能
  • 电脑上一键复制是哪个键
  • 只交社保不发工资可以吗
  • 企业网管出路
  • 前端框架view
  • php socket 非阻塞
  • php sendmail
  • 税控减免怎么做账
  • 冲减应付账款如何做账
  • thinkphp隐藏index.php
  • 酒店客房收入怎么算
  • 你别找了
  • 微信小程序开发平台
  • 检测命令
  • 旅行社开的发票怎么记账?
  • 林场苗圃工作有哪些
  • 织梦cms不更新了吗
  • 分类信息有哪些网站
  • 企业所得税汇算清缴补缴税款分录
  • 房产税的定义是什么
  • 投资者减除费用30000
  • mysql集群配置
  • mysql创建和删除数据库
  • 在建工程增多
  • 小规模季度超过45万了怎么缴纳
  • 人工费没有发票怎么入账
  • 个人开运输发票需要的资料哪些?
  • 土地作为无形资产入账依据
  • 工程结算直接做主营业务成本
  • 基本建设费用的组成
  • 生产线计提折旧是否会减少现金流
  • 进项发票冲红退回怎么做账
  • 年限平均法计提折旧怎么算
  • 总分类账的依据
  • 什么是现金流量表分析的重点
  • 数据库表的行数
  • centos6 rpm
  • elf.exe是什么程序
  • Win10预览版镜像
  • windows 10 周年更新
  • win10系统无法安装ie11
  • win10预览版和正式版区别
  • 高通umb
  • awk中RS、ORS、FS、OFS的区别和联系小结
  • unity3d Human skin real time rendering plus 真实模拟人皮实时渲染 plus篇
  • jquery开发项目
  • node.js速成
  • linux查看shell脚本
  • [置顶]马粥街残酷史
  • javascript面向对象 第三方类库
  • 国家医保平台查不到住院记录
  • 台资企业有什么
  • 发票明细导入excel
  • 浙江职称评审网站官网
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设