位置: IT常识 - 正文

Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进(pytorch如何学)

编辑:rootadmin
Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进 Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进

目录

Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进

前言

一、NMS非极大值抑制算法

二、Hard-NMS非极大值代码

三、DIOU-NMS

 四、soft-NMS

前言

推荐整理分享Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进(pytorch如何学),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:pytorch如何学,pytorch learning rate,pytorch如何学,pytorch metric learning,pytorch learning rate,pytorch learning rate,pytorch metric learning,pytorch metric learning,内容如对您有帮助,希望把文章链接给更多的朋友!

在目标检测的预测阶段时,会输出许多候选的anchor box,其中有很多是明显重叠的预测边界框都围绕着同一个目标,这时候我就可以使用NMS来合并同一目标的类似边界框,或者说是保留这些边界框中最好的一个。

如果对IOU等知识不了解的可以看我上篇博客Pytorch机器学习(五)——目标检测中的损失函数(l2,IOU,GIOU,DIOU, CIOU)

一、NMS非极大值抑制算法

我们先看一下NMS的直观理解,左图为两个ground truth的bbox,右图为我自己模拟网络输出的预测框。

 而下图则是我使用Pytorch官方提供的NMS实现的非极大值抑制,可以看到经过NMS后预测框保留了效果最好的,去除了冗余的预测框。

 

 下面来讲讲NMS算法的流程,其实也是十分简单的

        一.从所有候选框中选取置信度最高的预测边界框B1作为基准,然后将所有与B1的IOU超过预定阈值的其他边界框移除。

(这时所有边界框中B1为置信度最高的边界框且没有和其太过相似的边界框——非极大值置信度的边界框被抑制了)

        二.从所有候选框中选取置信度第二高的边界框B2作为一个基准,将所有与B2的IOU超过预定阈值的其他边界框移除。

        三.重复上述操作,直到所有预测框都被当做基准——这时候没有一对边界框过于相似

二、Hard-NMS非极大值代码Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进(pytorch如何学)

在YOLOV5的源码当中,作者是直接调用了Pytorch官方的NMS的API

在general.py中的non_max_suppression函数中

"""其中boxes为Nx4的tensor,N为框的数量,4则为x1 y1 x2 y2socres为N维的tensor,表示每个框的置信度iou_thres则为上面算法中的IOU阈值返回值为一个去除了过于相似框后的,根据置信度降序排列的列表,我们就可以根据此列表输出预测框"""i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS

为了便于后续其他NMS的改进,这里我们也自己写一个NMS算法,这里借鉴了沐神的代码b站链接,大家可以直接在YOLOV5中把上面的torchvision.ops.nms更改为下面的NMS函数

def NMS(boxes, scores, iou_thres, GIoU=False, DIoU=False, CIoU=False): """ :param boxes: (Tensor[N, 4])): are expected to be in ``(x1, y1, x2, y2) :param scores: (Tensor[N]): scores for each one of the boxes :param iou_thres: discards all overlapping boxes with IoU > iou_threshold :return:keep (Tensor): int64 tensor with the indices of the elements that have been kept by NMS, sorted in decreasing order of scores """ # 按conf从大到小排序 B = torch.argsort(scores, dim=-1, descending=True) keep = [] while B.numel() > 0: # 取出置信度最高的 index = B[0] keep.append(index) if B.numel() == 1: break # 计算iou,根据需求可选择GIOU,DIOU,CIOU iou = bbox_iou(boxes[index, :], boxes[B[1:], :], GIoU=GIoU, DIoU=DIoU, CIoU=CIoU) # 找到符合阈值的下标 inds = torch.nonzero(iou <= iou_thres).reshape(-1) B = B[inds + 1] return torch.tensor(keep)

这里的计算IOU的函数——bbox_iou则是直接引用了YOLOV5中的代码,其简洁的集成了对与GIOU,DIOU,CIOU的计算。

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps iou = inter / union if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / ((1 + eps) - iou + v) return iou - (rho2 / c2 + v * alpha) # CIoU else: # GIoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU else: return iou # IoU三、DIOU-NMS

其实DIOU-NMS就是把我上面说的NMS算法中的IOU阈值改为DIOU,将NMS代码中的DIOU设置为True即可。

根据DIOU的论文,如果只是单纯的使用NMS,即是使用IOU作为阈值去筛掉其他预测框时,当两个物体过于接近时,很有可能另外一个物体的预测框就被滤除了。

就像下图中的摩托。使用DIOU-NMS可以一定程度上提升对于靠近的物体的检测。

 四、soft-NMS

网上还有一种soft-NMS的算法,其思想就是传统的NMS,如果只通过IOU值就将其他的框直接去掉,有可能会不妥,于是就引入了soft-NMS。

具体流程就是我们把NMS算法中去除其他边界框改成,修改其他边界框的置信度。

以下引一个博主的图

 其中的f()函数,现在都是使用的高斯函数

si即为置信度,M为当前最大置信度的边界框,bi为其他边界框

网上对此的效果看法也是褒贬不一,我自己也没有试过,但从直觉来说,我个人觉得效果不会有很大的提升,如果感兴趣的可以自己试一试。

本文链接地址:https://www.jiuchutong.com/zhishi/293071.html 转载请保留说明!

上一篇:浏览器:跨域及解决方法(前端解决浏览器跨域问题)

下一篇:网站百度统计被恶意刷广告的处理方法(百度统计网址)

  • 增值税发票如何抵扣税款
  • 什么是价内税不是重复了吗
  • 以前年度无形资产本年摊销额
  • 外贸出口备案需准备什么资料
  • 个人承包工程怎么交个税
  • 2019年计算机软件行业人均年工资
  • 佣金是否要交所得税
  • 个人开利息发票的税率与会计分录
  • 工资薪金所得适用的税率是
  • 固定资产减值准备增加记哪方
  • 企业所得税汇算清缴网上申报流程
  • 成本费用包括哪些包括外购材料吗
  • 银行承兑贴息率是年利率吗
  • 注册公司有哪些好处和坏处
  • 公司没有残疾人要交残疾人保障金吗
  • 发票失联企业不处理的后果
  • 新会计准则下的会计科目
  • 申请一般纳税人公司流程
  • php7.3
  • 电脑一开机一会一会黑屏
  • 教程图怎么做
  • php数组函数 菜鸟
  • 苹果最小的充电器是哪一款
  • php静态函数
  • 个人税收是怎么计算的举例
  • 资产负债表的编制方法和步骤
  • 最贵的苹果平板
  • laravel 分层
  • 拆迁以后
  • 油猴脚本插件官网
  • 委托证券公司发行股票的手续费计入什么科目
  • 固定资产一次性折旧账务处理
  • php点击复制代码
  • 暂估入库的商品含税吗
  • 投资担保公司的钱都去哪了
  • 数字图像处理期末试卷及答案
  • thinkphp codeigniter
  • 发票开具使用要求
  • 借款存入银行会计分录怎么写
  • python有没有指针
  • python解密加密文件
  • python 字典中的字典
  • 代理付银行手续费合法吗
  • 织梦相关文章调用
  • php 操作mongodb
  • 房地产企业政府返还款
  • 营业执照变更法人需要本人去吗
  • 收到现金货款怎么处理
  • 员工工资怎么计提
  • 单独运费怎么做账
  • 电商行业的采购
  • 安装工程什么时候套脚手架搭拆
  • 公司购买黄金送客户可以抵税吗
  • 法人网上变更流程
  • 修筑公路的流程视频
  • 地方水利建设基金怎么计算
  • 原始凭证丢了判刑吗
  • 旅游饮食服务业会计课后答案
  • ubuntu x
  • fedora os
  • porteus中文版下载
  • Ubuntu 14.04系统怎么安装Nvidia 私有显卡驱动?
  • mac上的
  • win8怎么禁止开机启动项
  • efs加密解除
  • win7专用字符编辑程序的使用方法
  • jquery1
  • python中将
  • jquery库文件
  • nodemcu连接阿里云
  • 安卓自定义acl文件
  • Android-Canvas.drawText()详解
  • 安卓多线程有几种实现方法
  • 退伍军人买车需要摇号吗
  • 云南人社12333app官网
  • 银行内部有遴选吗知乎
  • 混合销售定义是什么意思
  • 异地可以打印银行清单吗?
  • 固定资产原值包括哪些
  • 如何落实请示汇报
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设