位置: IT常识 - 正文

Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进(pytorch如何学)

编辑:rootadmin
Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进 Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进

目录

Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进

前言

一、NMS非极大值抑制算法

二、Hard-NMS非极大值代码

三、DIOU-NMS

 四、soft-NMS

前言

推荐整理分享Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进(pytorch如何学),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:pytorch如何学,pytorch learning rate,pytorch如何学,pytorch metric learning,pytorch learning rate,pytorch learning rate,pytorch metric learning,pytorch metric learning,内容如对您有帮助,希望把文章链接给更多的朋友!

在目标检测的预测阶段时,会输出许多候选的anchor box,其中有很多是明显重叠的预测边界框都围绕着同一个目标,这时候我就可以使用NMS来合并同一目标的类似边界框,或者说是保留这些边界框中最好的一个。

如果对IOU等知识不了解的可以看我上篇博客Pytorch机器学习(五)——目标检测中的损失函数(l2,IOU,GIOU,DIOU, CIOU)

一、NMS非极大值抑制算法

我们先看一下NMS的直观理解,左图为两个ground truth的bbox,右图为我自己模拟网络输出的预测框。

 而下图则是我使用Pytorch官方提供的NMS实现的非极大值抑制,可以看到经过NMS后预测框保留了效果最好的,去除了冗余的预测框。

 

 下面来讲讲NMS算法的流程,其实也是十分简单的

        一.从所有候选框中选取置信度最高的预测边界框B1作为基准,然后将所有与B1的IOU超过预定阈值的其他边界框移除。

(这时所有边界框中B1为置信度最高的边界框且没有和其太过相似的边界框——非极大值置信度的边界框被抑制了)

        二.从所有候选框中选取置信度第二高的边界框B2作为一个基准,将所有与B2的IOU超过预定阈值的其他边界框移除。

        三.重复上述操作,直到所有预测框都被当做基准——这时候没有一对边界框过于相似

二、Hard-NMS非极大值代码Pytorch机器学习(八)—— YOLOV5中NMS非极大值抑制与DIOU-NMS等改进(pytorch如何学)

在YOLOV5的源码当中,作者是直接调用了Pytorch官方的NMS的API

在general.py中的non_max_suppression函数中

"""其中boxes为Nx4的tensor,N为框的数量,4则为x1 y1 x2 y2socres为N维的tensor,表示每个框的置信度iou_thres则为上面算法中的IOU阈值返回值为一个去除了过于相似框后的,根据置信度降序排列的列表,我们就可以根据此列表输出预测框"""i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS

为了便于后续其他NMS的改进,这里我们也自己写一个NMS算法,这里借鉴了沐神的代码b站链接,大家可以直接在YOLOV5中把上面的torchvision.ops.nms更改为下面的NMS函数

def NMS(boxes, scores, iou_thres, GIoU=False, DIoU=False, CIoU=False): """ :param boxes: (Tensor[N, 4])): are expected to be in ``(x1, y1, x2, y2) :param scores: (Tensor[N]): scores for each one of the boxes :param iou_thres: discards all overlapping boxes with IoU > iou_threshold :return:keep (Tensor): int64 tensor with the indices of the elements that have been kept by NMS, sorted in decreasing order of scores """ # 按conf从大到小排序 B = torch.argsort(scores, dim=-1, descending=True) keep = [] while B.numel() > 0: # 取出置信度最高的 index = B[0] keep.append(index) if B.numel() == 1: break # 计算iou,根据需求可选择GIOU,DIOU,CIOU iou = bbox_iou(boxes[index, :], boxes[B[1:], :], GIoU=GIoU, DIoU=DIoU, CIoU=CIoU) # 找到符合阈值的下标 inds = torch.nonzero(iou <= iou_thres).reshape(-1) B = B[inds + 1] return torch.tensor(keep)

这里的计算IOU的函数——bbox_iou则是直接引用了YOLOV5中的代码,其简洁的集成了对与GIOU,DIOU,CIOU的计算。

def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 box2 = box2.T # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps union = w1 * h1 + w2 * h2 - inter + eps iou = inter / union if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / ((1 + eps) - iou + v) return iou - (rho2 / c2 + v * alpha) # CIoU else: # GIoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU else: return iou # IoU三、DIOU-NMS

其实DIOU-NMS就是把我上面说的NMS算法中的IOU阈值改为DIOU,将NMS代码中的DIOU设置为True即可。

根据DIOU的论文,如果只是单纯的使用NMS,即是使用IOU作为阈值去筛掉其他预测框时,当两个物体过于接近时,很有可能另外一个物体的预测框就被滤除了。

就像下图中的摩托。使用DIOU-NMS可以一定程度上提升对于靠近的物体的检测。

 四、soft-NMS

网上还有一种soft-NMS的算法,其思想就是传统的NMS,如果只通过IOU值就将其他的框直接去掉,有可能会不妥,于是就引入了soft-NMS。

具体流程就是我们把NMS算法中去除其他边界框改成,修改其他边界框的置信度。

以下引一个博主的图

 其中的f()函数,现在都是使用的高斯函数

si即为置信度,M为当前最大置信度的边界框,bi为其他边界框

网上对此的效果看法也是褒贬不一,我自己也没有试过,但从直觉来说,我个人觉得效果不会有很大的提升,如果感兴趣的可以自己试一试。

本文链接地址:https://www.jiuchutong.com/zhishi/293071.html 转载请保留说明!

上一篇:浏览器:跨域及解决方法(前端解决浏览器跨域问题)

下一篇:网站百度统计被恶意刷广告的处理方法(百度统计网址)

  • 物业收电费有问题找谁解决
  • 如何确定交易性金融资产
  • 建筑业资源税如何缴纳
  • 境内公司代付境外货款
  • 退伍士兵增值税减免账务处理
  • 非同一控制下企业合并对价小于可辨认
  • 土地整理项目如何提取地块的坐标
  • 提前竣工的规定是什么
  • 提取备用金现金流量
  • 建筑业挂靠核定征收会计分录怎么写?
  • 简易计税是否可以开增值税专用发票
  • 资源税是否需要计提?
  • 增值税发票的地址已变更过怎么办
  • 企业去年
  • 定额发票2019
  • 什么是所有者权益?其包括哪些内容
  • 企业收入为免税收入的是
  • 暂估原材料已领用还红冲吗
  • 企业购买自行车记账什么科目
  • 专票小数点后两位没有显示出来可以认证吗
  • 房地产开发成本测算套表(全过程)
  • 固定资产的折旧从什么时候开始
  • 激活windows11怎么激活
  • 棚户区改造贷款管理办法
  • 上年度的费用今年怎么算
  • laravel learnku
  • 预付款无法收回账务处理
  • php字符串定义
  • jquery怎么升级
  • 离职补偿金如何缴纳个人所得税?
  • 计算机指令用来做什么
  • 不能抵扣的发票可以做成本吗
  • 企业安置残疾人如何残联备案
  • 建筑业红冲发票如何处理
  • 若依框架使用教程
  • php smtp类
  • 房屋土地使用权到期后续费标准
  • 什么是加计扣除政策
  • 图文处理是做什么工作
  • vue axios.all
  • 下列关于纳税人发生兼营行为
  • springcloud分布式微服务组件
  • SQL Server 跨库同步数据
  • 货物不符合质量条款规定
  • 公司固定资产抵押贷款无法偿还
  • 扣税8%
  • 租办公室自己装修可以拆走吗
  • 如何核算小企业成本
  • 进项留抵月末要结转吗
  • 企业股权融资方式有哪些
  • 五险一金缴纳比例2023
  • 为什么其他权益工具投资处置价差计留存收益
  • 债权投资的账务处理办法
  • 将现金存入银行编制什么凭证
  • 收到返利怎么做会计分录
  • 水泥销售技巧
  • 小规模纳税人减按1%政策
  • 五险一金个人和公司缴费比例
  • 购入一辆运输汽车,价值5.6万元,款项尚未支付
  • sqlserver排序规则怎么看
  • 安装freebsd
  • win8桌面右键无法使用
  • 怎么在mac上看电视剧
  • Retina MacBook和10.10.3支持更快的NVMe SSD接口
  • mac2019强制关机
  • cocos creator 动画制作
  • unity软件设计
  • 单线程语言有哪些
  • jquery.js
  • setcontentview报错
  • sequelize join
  • android学习路线
  • 字符有大小吗
  • 由浅入深易,由深入浅难
  • 用python播放音乐
  • nodejs搭建网站
  • js运行效率
  • python简易
  • 办理授权税务事项有哪些
  • 推进落实类似的词语
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设