位置: IT常识 - 正文

GPT模型总结【模型结构及计算过程_详细说明】(gpt详解)

编辑:rootadmin
GPT模型总结【模型结构及计算过程_详细说明】 GPT模型

推荐整理分享GPT模型总结【模型结构及计算过程_详细说明】(gpt详解),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:gpt3 模型大小,gpt2模型大小,gpt3 模型大小,gpd模型,gpt3模型结构,gpt-2模型,gpt 模型,gpt 模型,内容如对您有帮助,希望把文章链接给更多的朋友!

GPT模型:生成式预训练模型(Generative Pre-Training)

总体结构:

无监督的预训练 有监督的下游任务精调

核心结构:中间部分主要由12个Transformer Decoder的block堆叠而成

下面这张图更直观地反映了模型的整体结构:

模型描述

GPT 使用 Transformer的 Decoder 结构,并对 Transformer Decoder 进行了一些改动,原本的 Decoder 包含了两个 Multi-Head Attention 结构,GPT 只保留了 Mask Multi-Head Attention,如下图所示。 (很多资料上说类似于decoder结构,因为采用了decoder的mask机制,不过抛开这一点,其实感觉和encoder会更像,所以实现时有时反而是调encoder实现 莫烦Python GPT实现代码)

对比原有transformer的结构

阶段描述预训练阶段:

预训练阶段为文本预测,即根据已有的历史词预测当前时刻的词,7-2,7-3,7-4三个式子对应之前的GPT结构图,输出P(x)为输出,每个词被预测到的概率,再利用7-1式,计算最大似然函数,据此构造损失函数,即可以对该语言模型进行优化。

下游任务精调阶段

损失函数

下游任务与上游任务损失的线性组合

计算过程:输入Embedding多层transformer的block拿到两个输出端结果计算损失反向传播更新参数

一个具体的GPT实例代码: 可以看到GPT模型的forward函数中,首先进行Embedding操作,然后经过12层transformer的block中进行运算,然后分别经过两个线性变换得到最终计算值(一个用于文本预测,一个用于任务分类器),代码与最开始展示的模型结构图保持一致。 参考:莫烦Python GPT实现代码 下面我们着重关注计算步骤2, 3

计算细节:【Embedding层】:GPT模型总结【模型结构及计算过程_详细说明】(gpt详解)

查表操作 Embedding层就是以one hot为输入、中间层节点为字向量维数的全连接层。而这个全连接层的参数,就是一个“字向量表”。 one hot型的矩阵相乘,就像是相当于查表,于是它直接用查表作为操作,而不写成矩阵再运算,这大大降低了运算量。再次强调,降低了运算量不是因为词向量的出现,而是因为把one hot型的矩阵运算简化为了查表操作。

【GPT中类似transformer的decoder层】:

每个decoder层包含两个子层

sublayer1: mask的多头注意力层sublayer2: ffn (feed-forward network)前馈网络(多层感知机)sublayer1:mask的多头注意力层

输入: q, k, v, mask 计算注意力:Linear(矩阵乘法)→Scaled Dot-Product Attention→Concat(多个注意力的结果, reshape )→Linear(矩阵乘法)

残差连接和归一化操作:Dropout操作→残差连接→层归一化操作

计算过程:

下面这段内容介绍了计算注意力的整体过程:

分解说明:Mask Multi-head Attention1.矩阵乘法:

将输入的q,k,v进行变换

2.Scaled Dot-Product Attention

主要就是进行attention的计算以及mask的操作 Mask操作:masked_fill_(mask, value) 掩码操作,用value填充tensor中与mask中值为1位置相对应的元素。mask的形状必须与要填充的tensor形状一致。(这里采用-inf填充,从而softmax之后变成0,相当于看不见后面的词) transformer中的mask操作

mask后可视化矩阵: 直观理解是每个词只能看到它之前的词(因为目的就是要预测未来的词嘛,要是看到了就不用预测了)

3.Concat操作:

综合多个注意力头的结果,实际上是对矩阵做变换:permute,reshape操作,降维。(如下图红框中所示)

4.矩阵乘法:一个Linear层,对注意力结果线性变换

整个mask多头注意力层的代码: 注意到:上述代码中后面几行是对注意力结果进行残差连接和归一化操作 下说明这一过程:

残差连接和归一化操作:5.Dropout层6.矩阵加法7.层归一化

批量归一化是不同训练数据之间对单个神经元的归一化,层归一化是单个训练数据对某一层所有神经元之间的归一化。 输入归一化、批量归一化(BN)与层归一化(LN)

代码展示:

sublayer2: ffn (feed-forward network)前馈网络1.线性层(矩阵乘法)2.relu函数激活3.线性层(矩阵乘法)4.Dropout操作5.层归一化

【线性层】:

多层block的输出结果放到两个线性层中进行变换,比较简单,不做赘述。

补充:注意力层流程图示

参考资料

1.参考论文:Radford et al. 《Improving Language Undersatnding by Generative Pre-Training"》 2.参考书籍:《自然语言处理 基于预训练模型的方法》车万翔,郭江,崔一鸣 3.本文中代码来源:莫烦Python GPT实现代码 4.其它参考链接(博文中已提到部分): word embedding计算过程剖析 Transformer的矩阵维度分析和Mask详解

本文链接地址:https://www.jiuchutong.com/zhishi/293129.html 转载请保留说明!

上一篇:LangChain与大型语言模型(LLMs)应用基础教程:信息抽取

下一篇:CSS: overflow-anchor 固定滚动到底部,随着页面内容增多滚动条自己滚动展示最新的内容

  • 申报个税后发生扣工资
  • 免抵退和免退税 区别 委托
  • 银行承兑汇票和支票的区别
  • 个体户需要税务申报吗?
  • 买车的报税联是什么作用
  • 个人非税收入包括哪些
  • 土地返还款属于政府补助吗
  • 公司偷税漏税是当事人责任大还是法人责任大
  • 没收土地竞买保证金政策法律
  • 企业采购材料没有发票是要交企业所得税吗
  • 预收账款转为主营业务收入
  • 哪些发票可以进账认证
  • 收到销项负数发票
  • 非居民企业所得税源泉扣缴管理暂行办法
  • 企业未实际列支教育经费要纳税调整吗?
  • 文化事业建设税怎么申报
  • 离职补偿金个税计算器2022
  • 资管产品征税
  • 三十个生僻字
  • 用于研发的材料进项能否加计抵扣1%
  • 收取会员费收入会计分录
  • 研发设备一次性计入研发费用账务处理
  • 增值税一般项目是指什么
  • 没有证书可以报特长生吗
  • 当月未出账费用
  • 固定资产核销怎么做
  • 留抵税额算进项税额吗
  • 腾讯手游助手卡顿严重
  • microsoft edge怎么改成ie11
  • 票据追索权纠纷被告
  • 残保金必须交社保才能领吗
  • 溢价购入债权投资是为啥
  • thinkphp5控制器
  • 金融资产的会计处理方法
  • 角马群的迁徙方向
  • php各大框架以及实现原理
  • php编辑器哪个好
  • 前端file对象
  • php输出语法
  • 出售还在摊销的产品
  • loss for
  • php判断用户名是否正确
  • 支付押金无法收取怎么办
  • 金蝶存货核算不能结账,能强制结账吗
  • 律师事务所可不可以对外投资呢
  • 什么是技术服务工程师
  • 公司股东投资在哪里查
  • 新会计准则里的机械作业是什么
  • 工商企业年报网上申报流程
  • mysql运行报错
  • mysql 虚拟机
  • 接受母公司捐赠现金分录
  • 红字发票什么意思怎么做账
  • 个体工商营业执照注销需要缴费吗
  • 工会经费在哪儿申报
  • 双方投资合作项目合法吗
  • 企业逾期贷款利息影响征信吗
  • 外币折算差额怎么计算
  • 个体工商户记账报税教程
  • 企业实缴资本如何查
  • 电子发票服务平台怎么下载发票
  • 工程施工会计科目及账务处理
  • 小规模印花税怎么报
  • 什么是记账凭证?有哪些分类
  • sql server的 update from 语句的深究
  • 中兴新支点操作系统安装教程
  • centos7手册
  • win8光盘安装
  • win10可以关闭的功能
  • 硬盘已经安装系统文件夹
  • linux的web服务器
  • 使用shell脚本实现自动化软件部署
  • css教程大全
  • vue做一个table
  • linux脚本自启
  • jquery get(0)
  • 脚本 python
  • 云南省低保查询网上查询
  • 深圳罗湖区公安局长安慧君简历
  • 消费税是含税价
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设