位置: IT常识 - 正文

[YOLOv7/YOLOv5系列算法改进NO.11]主干网络C3替换为轻量化网络MobileNetV3(yolov5m)

编辑:rootadmin

推荐整理分享[YOLOv7/YOLOv5系列算法改进NO.11]主干网络C3替换为轻量化网络MobileNetV3(yolov5m),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov5 ciou,yolov5 c,yolov5简介,yolo v5详解,yolov5tiny,yolov5m,yolov5s,yolov5s,内容如对您有帮助,希望把文章链接给更多的朋友!

​前 言:作为当前先进的深度学习目标检测算法YOLOv5,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv5的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。

解决问题:YOLOv5主干特征提取网络采用C3结构,带来较大的参数量,检测速度较慢,应用受限,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型时难以被应用的。首先是模型过于庞大,面临着内存不足的问题,其次这些场景要求低延迟,或者说响应速度要快,想象一下自动驾驶汽车的行人检测系统如果速度很慢会发生什么可怕的事情。所以,研究小而高效的CNN模型在这些场景至关重要,至少目前是这样,尽管未来硬件也会越来越快。本文尝试将主干特征提取网络替换为更轻量的MobileNet网络,以实现网络模型的轻量化,平衡速度和精度。

原理:

论文地址:https://arxiv.org/abs/1905.02244.pdf

代 码:https://github.com/LeBron-Jian/DeepLearningNote

MobileNet V3 相关技术如下:

1,用 MnasNet 搜索网络结构

2,用 V1 的深度可分离

3,用 V2 的倒置残差线性瓶颈结构

[YOLOv7/YOLOv5系列算法改进NO.11]主干网络C3替换为轻量化网络MobileNetV3(yolov5m)

4,引入 SE模块

5,新的激活函数 h-swish(x)

6,网络搜索中利用两个策略:资源受限的 NAS 和 NetAdapt

7,修改 V2 最后部分减小计算

方 法:

第一步修改common.py,增加MobileNetV3模块。部分代码如下。

class StemBlock(nn.Module): def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True): super(StemBlock, self).__init__() self.stem_1 = Conv(c1, c2, k, s, p, g, act) self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0) self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1) self.stem_2p = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0) def forward(self, x): stem_1_out = self.stem_1(x) stem_2a_out = self.stem_2a(stem_1_out) stem_2b_out = self.stem_2b(stem_2a_out) stem_2p_out = self.stem_2p(stem_1_out) out = self.stem_3(torch.cat((stem_2b_out, stem_2p_out), 1)) return outclass h_swish(nn.Module): def __init__(self, inplace=True): super(h_swish, self).__init__() self.sigmoid = h_sigmoid(inplace=inplace) def forward(self, x): y = self.sigmoid(x) return x * yclass SELayer(nn.Module): def __init__(self, channel, reduction=4): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), h_sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = y.view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * yclass conv_bn_hswish(nn.Module): """ This equals to def conv_3x3_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), h_swish() ) """ def __init__(self, c1, c2, stride): super(conv_bn_hswish, self).__init__() self.conv = nn.Conv2d(c1, c2, 3, stride, 1, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = h_swish() def forward(self, x): return self.act(self.bn(self.conv(x))) def fuseforward(self, x): return self.act(self.conv(x))class MobileNetV3_InvertedResidual(nn.Module): def __init__(self, inp, oup, hidden_dim, kernel_size, stride, use_se, use_hs): super(MobileNetV3_InvertedResidual, self).__init__() assert stride in [1, 2] self.identity = stride == 1 and inp == oup if inp == hidden_dim: self.conv = nn.Sequential( # dw nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), h_swish() if use_hs else nn.ReLU(inplace=True), # Squeeze-and-Excite SELayer(hidden_dim) if use_se else nn.Sequential(), # Eca_layer(hidden_dim) if use_se else nn.Sequential(),#1.13.2022 # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) else: self.conv = nn.Sequential( # pw nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), nn.BatchNorm2d(hidden_dim), h_swish() if use_hs else nn.ReLU(inplace=True), # dw nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), # Squeeze-and-Excite SELayer(hidden_dim) if use_se else nn.Sequential(), # Eca_layer(hidden_dim) if use_se else nn.Sequential(), # 1.13.2022 h_swish() if use_hs else nn.ReLU(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) def forward(self, x): y = self.conv(x) if self.identity: return x + y else: return y

第二步:将yolo.py中注册模块。

if m in [Conv,MobileNetV3_InvertedResidual,ShuffleNetV2_InvertedResidual, ]:

第三步:修改yaml文件

backbone: # MobileNetV3-large # [from, number, module, args] [[-1, 1, conv_bn_hswish, [16, 2]], # 0-p1/2 [-1, 1, MobileNetV3_InvertedResidual, [ 16, 16, 3, 1, 0, 0]], # 1-p1/2 [-1, 1, MobileNetV3_InvertedResidual, [ 24, 64, 3, 2, 0, 0]], # 2-p2/4 [-1, 1, MobileNetV3_InvertedResidual, [ 24, 72, 3, 1, 0, 0]], # 3-p2/4 [-1, 1, MobileNetV3_InvertedResidual, [ 40, 72, 5, 2, 1, 0]], # 4-p3/8 [-1, 1, MobileNetV3_InvertedResidual, [ 40, 120, 5, 1, 1, 0]], # 5-p3/8 [-1, 1, MobileNetV3_InvertedResidual, [ 40, 120, 5, 1, 1, 0]], # 6-p3/8 [-1, 1, MobileNetV3_InvertedResidual, [ 80, 240, 3, 2, 0, 1]], # 7-p4/16 [-1, 1, MobileNetV3_InvertedResidual, [ 80, 200, 3, 1, 0, 1]], # 8-p4/16 [-1, 1, MobileNetV3_InvertedResidual, [ 80, 184, 3, 1, 0, 1]], # 9-p4/16 [-1, 1, MobileNetV3_InvertedResidual, [ 80, 184, 3, 1, 0, 1]], # 10-p4/16 [-1, 1, MobileNetV3_InvertedResidual, [112, 480, 3, 1, 1, 1]], # 11-p4/16 [-1, 1, MobileNetV3_InvertedResidual, [112, 672, 3, 1, 1, 1]], # 12-p4/16 [-1, 1, MobileNetV3_InvertedResidual, [160, 672, 5, 1, 1, 1]], # 13-p4/16 [-1, 1, MobileNetV3_InvertedResidual, [160, 960, 5, 2, 1, 1]], # 14-p5/32 原672改为原算法960 [-1, 1, MobileNetV3_InvertedResidual, [160, 960, 5, 1, 1, 1]], # 15-p5/32 ]

结 果:本人在多个数据集上做了大量实验,针对不同的数据集效果不同,map值有所下降,但是权值模型大小降低,参数量下降。

预告一下:下一篇内容将继续分享网络轻量化方法的分享。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦

PS:干网络的替换不仅仅是适用改进YOLOv5,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv4、v3等。

最后,希望能互粉一下,做个朋友,一起学习交流。

本文链接地址:https://www.jiuchutong.com/zhishi/293745.html 转载请保留说明!

上一篇:uniapp制作pc端响应式布局——带开源前端【伸手党福利】【持续更新】(uniapp实战视频教程)

下一篇:麒麟Linux操作系统磁盘策略永久调整为deadline(麒麟软件的linux桌面操作系统)

  • 优惠政策所得税计算
  • 小规模公司初期注销流程
  • 知识产权申报费用多少钱
  • 通行费发票勾选认证有多少就可以抵扣多少吗
  • 发生销售折让可以不开具
  • 公司房产税如何征收税率
  • 车间员工的质量管理制度
  • 计提摊销房租会计分录
  • 产品成本的计算公式
  • 集团公司转股要交印花税吗?
  • 专票红冲分录
  • 认证过的发票
  • 企业取得固定资产的方式有哪些
  • 税号都对开户行错了影响抵扣
  • 城市垃圾处理项目
  • 资金筹集业务的账务处理重点笔记
  • 餐饮业管理费用明细表
  • 稿费用交个人所得税吗
  • win10ie浏览器没有internet选项
  • 在win10系统中,如何限制孩子玩原神游戏
  • 广告联系电话
  • 应收账款零头会计处理
  • 公司收到拆迁补偿款要交税吗
  • linux 网络故障
  • ThinkPHP让../Public在模板不解析(直接输出)的方法 原创
  • php字符串赋值
  • 超额累进税率包括
  • 两台电脑文件共享,显示没有访问权限
  • 加拿大克卢恩国家公园
  • 股权换股权会计分录
  • 购买加油卡能否抵扣
  • php动态变量
  • 支付宝提现到对公账户怎么做账
  • 合同内容和开票内容不一致
  • php批量删除文件
  • ps怎么把多余的p掉
  • 固定资产清理销售的收入
  • php windows
  • 月末制造费用转入生产成本,因此期末账户一定无余额吗?
  • 挂靠方项目部账务是否并入被挂靠方公司账务?
  • 新开企业如何在电子税务局操作
  • python搞自动化
  • 应收账款的差额计入哪里
  • mongodb4.4.2安装教程
  • 小企业如何计提折旧
  • 非房地产企业的基建管理办法
  • 增值税专用发票是干什么用的
  • sql查询使用临时表
  • 待报解啥意思
  • 企业所得税税前扣除项目有哪些
  • 行程单入账多久钱能到账
  • 长期待摊费用进项税分录
  • 工程物资属于什么项目
  • 人民币支付结算系统CIPS
  • 高速过路费抵扣增值税
  • 转售水电费收入确认
  • 研发费用入账
  • 企业存货借款利息怎么算
  • 计提税金及附加的金额如何算
  • 单位存款的种类有哪些
  • centos编译器
  • ensmix32.exe进程安全吗 ensmix32进程是什么文件产生的
  • linux编译安装怎么卸载
  • nginx 虚拟ip
  • win7怎样添加开机启动项
  • vim的配置文件名
  • linux virtio
  • Win7电脑屏幕横过来了怎么恢复
  • win7怎么更改用户名和密码
  • CCMoveBy与CCMoveTo
  • windows升级node版本
  • Node.js中的全局对象有
  • node.js教程详细
  • 网页css加载失败
  • Node.js中的construct
  • 关于事件的报告范文
  • 福建医保省外报销政策
  • 如何践行中国精神论文
  • 龙岗区龙岗税务局地址
  • 合肥哪里可以注销电信卡
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设