位置: IT常识 - 正文
推荐整理分享手把手YOLOv5输出热力图(yolov5输出参数),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:yolov5输入,yolov2输出,yolov4的输出,yolov3输出是什么,yolov1输出,yolov4的输出,yolov1输出,yolov5 output,内容如对您有帮助,希望把文章链接给更多的朋友!
我的版本是YOLOV5 7.0
先看结果:结果仅供参考
具体步骤一:首先配置好YOLO V5环境 这个采用pip install requirements即可 具体配置环境可以看我其他的博客有详细介绍 GPU环境自己配置
步骤二:运行YOLO 没问题,输出结果:
步骤三在项目文件夹下添加main_gradcam.py文件 main_gradcam.py
import osimport randomimport timeimport argparseimport numpy as npfrom models.gradcam import YOLOV5GradCAM, YOLOV5GradCAMPPfrom models.yolov5_object_detector import YOLOV5TorchObjectDetectorimport cv2# 数据集类别名names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] # class names# yolov5s网络中的三个detect层target_layers = ['model_17_cv3_act', 'model_20_cv3_act', 'model_23_cv3_act']# Argumentsparser = argparse.ArgumentParser()parser.add_argument('--model-path', type=str, default="yolov5s.pt", help='Path to the model')parser.add_argument('--img-path', type=str, default='data/images/bus.jpg', help='input image path')parser.add_argument('--output-dir', type=str, default='runs/result17', help='output dir')parser.add_argument('--img-size', type=int, default=640, help="input image size")parser.add_argument('--target-layer', type=str, default='model_17_cv3_act', help='The layer hierarchical address to which gradcam will applied,' ' the names should be separated by underline')parser.add_argument('--method', type=str, default='gradcam', help='gradcam method')parser.add_argument('--device', type=str, default='cuda', help='cuda or cpu')parser.add_argument('--no_text_box', action='store_true', help='do not show label and box on the heatmap')args = parser.parse_args()def get_res_img(bbox, mask, res_img): mask = mask.squeeze(0).mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).detach().cpu().numpy().astype( np.uint8) heatmap = cv2.applyColorMap(mask, cv2.COLORMAP_JET) # n_heatmat = (Box.fill_outer_box(heatmap, bbox) / 255).astype(np.float32) n_heatmat = (heatmap / 255).astype(np.float32) res_img = res_img / 255 res_img = cv2.add(res_img, n_heatmat) res_img = (res_img / res_img.max()) return res_img, n_heatmatdef plot_one_box(x, img, color=None, label=None, line_thickness=3): # this is a bug in cv2. It does not put box on a converted image from torch unless it's buffered and read again! cv2.imwrite('temp.jpg', (img * 255).astype(np.uint8)) img = cv2.imread('temp.jpg') # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] outside = c1[1] - t_size[1] - 3 >= 0 # label fits outside box up c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 if outside else c1[1] + t_size[1] + 3 outsize_right = c2[0] - img.shape[:2][1] > 0 # label fits outside box right c1 = c1[0] - (c2[0] - img.shape[:2][1]) if outsize_right else c1[0], c1[1] c2 = c2[0] - (c2[0] - img.shape[:2][1]) if outsize_right else c2[0], c2[1] cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText(img, label, (c1[0], c1[1] - 2 if outside else c2[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) return img# 检测单个图片def main(img_path): colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] device = args.device input_size = (args.img_size, args.img_size) # 读入图片 img = cv2.imread(img_path) # 读取图像格式:BGR print('[INFO] Loading the model') # 实例化YOLOv5模型,得到检测结果 model = YOLOV5TorchObjectDetector(args.model_path, device, img_size=input_size, names=names) # img[..., ::-1]: BGR --> RGB # (480, 640, 3) --> (1, 3, 480, 640) torch_img = model.preprocessing(img[..., ::-1]) tic = time.time() # 遍历三层检测层 for target_layer in target_layers: # 获取grad-cam方法 if args.method == 'gradcam': saliency_method = YOLOV5GradCAM(model=model, layer_name=target_layer, img_size=input_size) elif args.method == 'gradcampp': saliency_method = YOLOV5GradCAMPP(model=model, layer_name=target_layer, img_size=input_size) masks, logits, [boxes, _, class_names, conf] = saliency_method(torch_img) # 得到预测结果 result = torch_img.squeeze(0).mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).detach().cpu().numpy() result = result[..., ::-1] # convert to bgr # 保存设置 imgae_name = os.path.basename(img_path) # 获取图片名 save_path = f'{args.output_dir}{imgae_name[:-4]}/{args.method}' if not os.path.exists(save_path): os.makedirs(save_path) print(f'[INFO] Saving the final image at {save_path}') # 遍历每张图片中的每个目标 for i, mask in enumerate(masks): # 遍历图片中的每个目标 res_img = result.copy() # 获取目标的位置和类别信息 bbox, cls_name = boxes[0][i], class_names[0][i] label = f'{cls_name}{conf[0][i]}' # 类别+置信分数 # 获取目标的热力图 res_img, heat_map = get_res_img(bbox, mask, res_img) res_img = plot_one_box(bbox, res_img, label=label, color=colors[int(names.index(cls_name))], line_thickness=3) # 缩放到原图片大小 res_img = cv2.resize(res_img, dsize=(img.shape[:-1][::-1])) output_path = f'{save_path}/{target_layer[6:8]}_{i}.jpg' cv2.imwrite(output_path, res_img) print(f'{target_layer[6:8]}_{i}.jpg done!!') print(f'Total time : {round(time.time() - tic, 4)} s')if __name__ == '__main__': # 图片路径为文件夹 if os.path.isdir(args.img_path): img_list = os.listdir(args.img_path) print(img_list) for item in img_list: # 依次获取文件夹中的图片名,组合成图片的路径 main(os.path.join(args.img_path, item)) # 单个图片 else: main(args.img_path)步骤四在model文件夹下添加如下两个py文件,分别是gradcam.py和yolov5_object_detector.py gradcam.py代码如下:
import timeimport torchimport torch.nn.functional as Fdef find_yolo_layer(model, layer_name): """Find yolov5 layer to calculate GradCAM and GradCAM++ Args: model: yolov5 model. layer_name (str): the name of layer with its hierarchical information. Return: target_layer: found layer """ hierarchy = layer_name.split('_') target_layer = model.model._modules[hierarchy[0]] for h in hierarchy[1:]: target_layer = target_layer._modules[h] return target_layerclass YOLOV5GradCAM: # 初始化,得到target_layer层 def __init__(self, model, layer_name, img_size=(640, 640)): self.model = model self.gradients = dict() self.activations = dict() def backward_hook(module, grad_input, grad_output): self.gradients['value'] = grad_output[0] return None def forward_hook(module, input, output): self.activations['value'] = output return None target_layer = find_yolo_layer(self.model, layer_name) # 获取forward过程中每层的输入和输出,用于对比hook是不是正确记录 target_layer.register_forward_hook(forward_hook) target_layer.register_full_backward_hook(backward_hook) device = 'cuda' if next(self.model.model.parameters()).is_cuda else 'cpu' self.model(torch.zeros(1, 3, *img_size, device=device)) def forward(self, input_img, class_idx=True): """ Args: input_img: input image with shape of (1, 3, H, W) Return: mask: saliency map of the same spatial dimension with input logit: model output preds: The object predictions """ saliency_maps = [] b, c, h, w = input_img.size() preds, logits = self.model(input_img) for logit, cls, cls_name in zip(logits[0], preds[1][0], preds[2][0]): if class_idx: score = logit[cls] else: score = logit.max() self.model.zero_grad() tic = time.time() # 获取梯度 score.backward(retain_graph=True) print(f"[INFO] {cls_name}, model-backward took: ", round(time.time() - tic, 4), 'seconds') gradients = self.gradients['value'] activations = self.activations['value'] b, k, u, v = gradients.size() alpha = gradients.view(b, k, -1).mean(2) weights = alpha.view(b, k, 1, 1) saliency_map = (weights * activations).sum(1, keepdim=True) saliency_map = F.relu(saliency_map) saliency_map = F.interpolate(saliency_map, size=(h, w), mode='bilinear', align_corners=False) saliency_map_min, saliency_map_max = saliency_map.min(), saliency_map.max() saliency_map = (saliency_map - saliency_map_min).div(saliency_map_max - saliency_map_min).data saliency_maps.append(saliency_map) return saliency_maps, logits, preds def __call__(self, input_img): return self.forward(input_img)class YOLOV5GradCAMPP(YOLOV5GradCAM): def __init__(self, model, layer_name, img_size=(640, 640)): super(YOLOV5GradCAMPP, self).__init__(model, layer_name, img_size) def forward(self, input_img, class_idx=True): saliency_maps = [] b, c, h, w = input_img.size() tic = time.time() preds, logits = self.model(input_img) print("[INFO] model-forward took: ", round(time.time() - tic, 4), 'seconds') for logit, cls, cls_name in zip(logits[0], preds[1][0], preds[2][0]): if class_idx: score = logit[cls] else: score = logit.max() self.model.zero_grad() tic = time.time() # 获取梯度 score.backward(retain_graph=True) print(f"[INFO] {cls_name}, model-backward took: ", round(time.time() - tic, 4), 'seconds') gradients = self.gradients['value'] # dS/dA activations = self.activations['value'] # A b, k, u, v = gradients.size() alpha_num = gradients.pow(2) alpha_denom = gradients.pow(2).mul(2) + \ activations.mul(gradients.pow(3)).view(b, k, u * v).sum(-1, keepdim=True).view(b, k, 1, 1) # torch.where(condition, x, y) condition是条件,满足条件就返回x,不满足就返回y alpha_denom = torch.where(alpha_denom != 0.0, alpha_denom, torch.ones_like(alpha_denom)) alpha = alpha_num.div(alpha_denom + 1e-7) positive_gradients = F.relu(score.exp() * gradients) # ReLU(dY/dA) == ReLU(exp(S)*dS/dA)) weights = (alpha * positive_gradients).view(b, k, u * v).sum(-1).view(b, k, 1, 1) saliency_map = (weights * activations).sum(1, keepdim=True) saliency_map = F.relu(saliency_map) saliency_map = F.interpolate(saliency_map, size=(h, w), mode='bilinear', align_corners=False) saliency_map_min, saliency_map_max = saliency_map.min(), saliency_map.max() saliency_map = (saliency_map - saliency_map_min).div(saliency_map_max - saliency_map_min).data saliency_maps.append(saliency_map) return saliency_maps, logits, predsyolov5_object_detector.py的代码如下:
import numpy as npimport torchfrom models.experimental import attempt_loadfrom utils.general import xywh2xyxyfrom utils.dataloaders import letterboximport cv2import timeimport torchvisionimport torch.nn as nnfrom utils.metrics import box_iouclass YOLOV5TorchObjectDetector(nn.Module): def __init__(self, model_weight, device, img_size, names=None, mode='eval', confidence=0.45, iou_thresh=0.45, agnostic_nms=False): super(YOLOV5TorchObjectDetector, self).__init__() self.device = device self.model = None self.img_size = img_size self.mode = mode self.confidence = confidence self.iou_thresh = iou_thresh self.agnostic = agnostic_nms self.model = attempt_load(model_weight, inplace=False, fuse=False) self.model.requires_grad_(True) self.model.to(device) if self.mode == 'train': self.model.train() else: self.model.eval() # fetch the names if names is None: self.names = ['your dataset classname'] else: self.names = names # preventing cold start img = torch.zeros((1, 3, *self.img_size), device=device) self.model(img) @staticmethod def non_max_suppression(prediction, logits, conf_thres=0.3, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, labels=(), max_det=300): """Runs Non-Maximum Suppression (NMS) on inference and logits results Returns: list of detections, on (n,6) tensor per image [xyxy, conf, cls] and pruned input logits (n, number-classes) """ nc = prediction.shape[2] - 5 # number of classes xc = prediction[..., 4] > conf_thres # candidates # Checks assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' # Settings min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() time_limit = 10.0 # seconds to quit after redundant = True # require redundant detections multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) merge = False # use merge-NMS t = time.time() output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] logits_output = [torch.zeros((0, nc), device=logits.device)] * logits.shape[0] # logits_output = [torch.zeros((0, 80), device=logits.device)] * logits.shape[0] for xi, (x, log_) in enumerate(zip(prediction, logits)): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence log_ = log_[xc[xi]] # Cat apriori labels if autolabelling if labels and len(labels[xi]): l = labels[xi] v = torch.zeros((len(l), nc + 5), device=x.device) v[:, :4] = l[:, 1:5] # box v[:, 4] = 1.0 # conf v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls x = torch.cat((x, v), 0) # If none remain process next image if not x.shape[0]: continue # Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) else: # best class only conf, j = x[:, 5:].max(1, keepdim=True) x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] log_ = log_[conf.view(-1) > conf_thres] # Filter by class if classes is not None: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Check shape n = x.shape[0] # number of boxes if not n: # no boxes continue elif n > max_nms: # excess boxes x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS if i.shape[0] > max_det: # limit detections i = i[:max_det] if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes if redundant: i = i[iou.sum(1) > 1] # require redundancy output[xi] = x[i] logits_output[xi] = log_[i] assert log_[i].shape[0] == x[i].shape[0] if (time.time() - t) > time_limit: print(f'WARNING: NMS time limit {time_limit}s exceeded') break # time limit exceeded return output, logits_output @staticmethod def yolo_resize(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): return letterbox(img, new_shape=new_shape, color=color, auto=auto, scaleFill=scaleFill, scaleup=scaleup) def forward(self, img): prediction, logits, _ = self.model(img, augment=False) prediction, logits = self.non_max_suppression(prediction, logits, self.confidence, self.iou_thresh, classes=None, agnostic=self.agnostic) self.boxes, self.class_names, self.classes, self.confidences = [[[] for _ in range(img.shape[0])] for _ in range(4)] for i, det in enumerate(prediction): # detections per image if len(det): for *xyxy, conf, cls in det: # 返回整数 bbox = [int(b) for b in xyxy] self.boxes[i].append(bbox) self.confidences[i].append(round(conf.item(), 2)) cls = int(cls.item()) self.classes[i].append(cls) if self.names is not None: self.class_names[i].append(self.names[cls]) else: self.class_names[i].append(cls) return [self.boxes, self.classes, self.class_names, self.confidences], logits def preprocessing(self, img): if len(img.shape) != 4: img = np.expand_dims(img, axis=0) im0 = img.astype(np.uint8) img = np.array([self.yolo_resize(im, new_shape=self.img_size)[0] for im in im0]) img = img.transpose((0, 3, 1, 2)) img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img / 255.0 return img步骤五更改model/yolo.py
具体而言 Detect类中的forward函数
def forward(self, x): z = [] # inference output logits_ = [] # 修改---1 for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) logits = x[i][..., 5:] # 修改---2 if isinstance(self, Segment): # (boxes + masks) xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4) xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, conf.sigmoid(), mask), 4) else: # Detect (boxes only) xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4) xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, conf), 4) z.append(y.view(bs, self.na * nx * ny, self.no)) logits_.append(logits.view(bs, -1, self.no - 5)) # 修改---3 # return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x) return x if self.training else (torch.cat(z, 1), torch.cat(logits_, 1), x) # 修改---4为了防止大家不知道怎么修改yolo.py文件,我将修改后的yolo.py文件放在下方 yolo.py
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license"""YOLO-specific modulesUsage: $ python models/yolo.py --cfg yolov5s.yaml"""import argparseimport contextlibimport osimport platformimport sysfrom copy import deepcopyfrom pathlib import PathFILE = Path(__file__).resolve()ROOT = FILE.parents[1] # YOLOv5 root directoryif str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATHif platform.system() != 'Windows': ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relativefrom models.common import *from models.experimental import *from utils.autoanchor import check_anchor_orderfrom utils.general import LOGGER, check_version, check_yaml, make_divisible, print_argsfrom utils.plots import feature_visualizationfrom utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device, time_sync)try: import thop # for FLOPs computationexcept ImportError: thop = Noneclass Detect(nn.Module): # YOLOv5 Detect head for detection models stride = None # strides computed during build dynamic = False # force grid reconstruction export = False # export mode def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.empty(0) for _ in range(self.nl)] # init grid self.anchor_grid = [torch.empty(0) for _ in range(self.nl)] # init anchor grid self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use inplace ops (e.g. slice assignment) def forward(self, x): z = [] # inference output logits_ = [] # 修改---1 for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) logits = x[i][..., 5:] # 修改---2 if isinstance(self, Segment): # (boxes + masks) xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4) xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, conf.sigmoid(), mask), 4) else: # Detect (boxes only) xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4) xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, conf), 4) z.append(y.view(bs, self.na * nx * ny, self.no)) logits_.append(logits.view(bs, -1, self.no - 5)) # 修改---3 # return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x) return x if self.training else (torch.cat(z, 1), torch.cat(logits_, 1), x) # 修改---4 def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')): d = self.anchors[i].device t = self.anchors[i].dtype shape = 1, self.na, ny, nx, 2 # grid shape y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t) yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x) # torch>=0.7 compatibility grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5 anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape) return grid, anchor_gridclass Segment(Detect): # YOLOv5 Segment head for segmentation models def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True): super().__init__(nc, anchors, ch, inplace) self.nm = nm # number of masks self.npr = npr # number of protos self.no = 5 + nc + self.nm # number of outputs per anchor self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.proto = Proto(ch[0], self.npr, self.nm) # protos self.detect = Detect.forward def forward(self, x): p = self.proto(x[0]) x = self.detect(self, x) return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])class BaseModel(nn.Module): # YOLOv5 base model def forward(self, x, profile=False, visualize=False): return self._forward_once(x, profile, visualize) # single-scale inference, train def _forward_once(self, x, profile=False, visualize=False): y, dt = [], [] # outputs for m in self.model: if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: self._profile_one_layer(m, x, dt) x = m(x) # run y.append(x if m.i in self.save else None) # save output if visualize: feature_visualization(x, m.type, m.i, save_dir=visualize) return x def _profile_one_layer(self, m, x, dt): c = m == self.model[-1] # is final layer, copy input as inplace fix o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs t = time_sync() for _ in range(10): m(x.copy() if c else x) dt.append((time_sync() - t) * 100) if m == self.model[0]: LOGGER.info(f"{'time (ms)':>10s}{'GFLOPs':>10s}{'params':>10s} module") LOGGER.info(f'{dt[-1]:10.2f}{o:10.2f}{m.np:10.0f}{m.type}') if c: LOGGER.info(f"{sum(dt):10.2f}{'-':>10s}{'-':>10s} Total") def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers LOGGER.info('Fusing layers... ') for m in self.model.modules(): if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, 'bn') # remove batchnorm m.forward = m.forward_fuse # update forward self.info() return self def info(self, verbose=False, img_size=640): # print model information model_info(self, verbose, img_size) def _apply(self, fn): # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers self = super()._apply(fn) m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment)): m.stride = fn(m.stride) m.grid = list(map(fn, m.grid)) if isinstance(m.anchor_grid, list): m.anchor_grid = list(map(fn, m.anchor_grid)) return selfclass DetectionModel(BaseModel): # YOLOv5 detection model def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes super().__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg, encoding='ascii', errors='ignore') as f: self.yaml = yaml.safe_load(f) # model dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value if anchors: LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') self.yaml['anchors'] = round(anchors) # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist self.names = [str(i) for i in range(self.yaml['nc'])] # default names self.inplace = self.yaml.get('inplace', True) # Build strides, anchors m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment)): s = 256 # 2x min stride m.inplace = self.inplace forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x) m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward check_anchor_order(m) m.anchors /= m.stride.view(-1, 1, 1) self.stride = m.stride self._initialize_biases() # only run once # Init weights, biases initialize_weights(self) self.info() LOGGER.info('') def forward(self, x, augment=False, profile=False, visualize=False): if augment: return self._forward_augment(x) # augmented inference, None return self._forward_once(x, profile, visualize) # single-scale inference, train def _forward_augment(self, x): img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) yi = self._forward_once(xi)[0] # forward # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save yi = self._descale_pred(yi, fi, si, img_size) y.append(yi) y = self._clip_augmented(y) # clip augmented tails return torch.cat(y, 1), None # augmented inference, train def _descale_pred(self, p, flips, scale, img_size): # de-scale predictions following augmented inference (inverse operation) if self.inplace: p[..., :4] /= scale # de-scale if flips == 2: p[..., 1] = img_size[0] - p[..., 1] # de-flip ud elif flips == 3: p[..., 0] = img_size[1] - p[..., 0] # de-flip lr else: x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale if flips == 2: y = img_size[0] - y # de-flip ud elif flips == 3: x = img_size[1] - x # de-flip lr p = torch.cat((x, y, wh, p[..., 4:]), -1) return p def _clip_augmented(self, y): # Clip YOLOv5 augmented inference tails nl = self.model[-1].nl # number of detection layers (P3-P5) g = sum(4 ** x for x in range(nl)) # grid points e = 1 # exclude layer count i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices y[0] = y[0][:, :-i] # large i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices y[-1] = y[-1][:, i:] # small return y def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency # https://arxiv.org/abs/1708.02002 section 3.3 # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. m = self.model[-1] # Detect() module for mi, s in zip(m.m, m.stride): # from b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum()) # cls mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)Model = DetectionModel # retain YOLOv5 'Model' class for backwards compatibilityclass SegmentationModel(DetectionModel): # YOLOv5 segmentation model def __init__(self, cfg='yolov5s-seg.yaml', ch=3, nc=None, anchors=None): super().__init__(cfg, ch, nc, anchors)class ClassificationModel(BaseModel): # YOLOv5 classification model def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index super().__init__() self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg) def _from_detection_model(self, model, nc=1000, cutoff=10): # Create a YOLOv5 classification model from a YOLOv5 detection model if isinstance(model, DetectMultiBackend): model = model.model # unwrap DetectMultiBackend model.model = model.model[:cutoff] # backbone m = model.model[-1] # last layer ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module c = Classify(ch, nc) # Classify() c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type model.model[-1] = c # replace self.model = model.model self.stride = model.stride self.save = [] self.nc = nc def _from_yaml(self, cfg): # Create a YOLOv5 classification model from a *.yaml file self.model = Nonedef parse_model(d, ch): # model_dict, input_channels(3) # Parse a YOLOv5 model.yaml dictionary LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}{'module':<40}{'arguments':<30}") anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation') if act: Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU() LOGGER.info(f"{colorstr('activation:')}{act}") # print na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): with contextlib.suppress(NameError): args[j] = eval(a) if isinstance(a, str) else a # eval strings n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain if m in { Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum(ch[x] for x in f) # TODO: channel, gw, gd elif m in {Detect, Segment}: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) if m is Segment: args[3] = make_divisible(args[3] * gw, 8) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f] m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module t = str(m)[8:-2].replace('__main__.', '') # module type np = sum(x.numel() for x in m_.parameters()) # number params m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}{t:<40}{str(args):<30}') # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save)if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--profile', action='store_true', help='profile model speed') parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer') parser.add_argument('--test', action='store_true', help='test all yolo*.yaml') opt = parser.parse_args() opt.cfg = check_yaml(opt.cfg) # check YAML print_args(vars(opt)) device = select_device(opt.device) # Create model im = torch.rand(opt.batch_size, 3, 640, 640).to(device) model = Model(opt.cfg).to(device) # Options if opt.line_profile: # profile layer by layer model(im, profile=True) elif opt.profile: # profile forward-backward results = profile(input=im, ops=[model], n=3) elif opt.test: # test all models for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'): try: _ = Model(cfg) except Exception as e: print(f'Error in {cfg}: {e}') else: # report fused model summary model.fuse()步骤六:运行main_gradcam.py 参数列表可以自己进行修改。
# Argumentsparser = argparse.ArgumentParser()parser.add_argument('--model-path', type=str, default="yolov5s.pt", help='Path to the model')parser.add_argument('--img-path', type=str, default='data/images/bus.jpg', help='input image path')parser.add_argument('--output-dir', type=str, default='runs/result17', help='output dir')parser.add_argument('--img-size', type=int, default=640, help="input image size")parser.add_argument('--target-layer', type=str, default='model_17_cv3_act', help='The layer hierarchical address to which gradcam will applied,' ' the names should be separated by underline')parser.add_argument('--method', type=str, default='gradcam', help='gradcam method')parser.add_argument('--device', type=str, default='cuda', help='cuda or cpu')parser.add_argument('--no_text_box', action='store_true', help='do not show label and box on the heatmap')args = parser.parse_args()完成
上一篇:前端FileReader对象实现图片file文件转base64(前端file对象)
下一篇:Echarts地图的基本使用方法(echarts地图参数设置)
友情链接: 武汉网站建设