位置: IT常识 - 正文

几种常见的归一化方法(常见的归中反应有哪些)

编辑:rootadmin
几种常见的归一化方法

推荐整理分享几种常见的归一化方法(常见的归中反应有哪些),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:什么是归一,常见的归中反应有哪些,常见的归中反应有哪些,几种常见的归一模型,常见的归一化算法包括,几种常见的归一模型,几种常见的归一模型,常见的归一化算法包括,内容如对您有帮助,希望把文章链接给更多的朋友!

数据归一化是深度学习数据预处理中非常关键的步骤,可以起到统一量纲,防止小数据被吞噬的作用。

一:归一化的概念

归一化就是把所有数据都转化成[0,1]或者[-1,1]之间的数,其目的是为了取消各维数据之间的数量级差别,避免因为输入输出数据数量级差别大而造成网络预测误差过大。

二:归一化的作用

1)为了后面数据处理的方便,归一化可以避免一些不必要的数值问题。

2)为了程序运行时收敛速度更快

3)统一量纲。样本数据的评价标准不一样,需要对其量纲化,统一评价标准,这算是应用层面的需求。

4)避免神经元饱和。就是说当神经元的激活在接近0或者1时,在这些区域,梯度几乎为0,这样在反向传播过程中,局部梯度就会接近于0,这样非常不利于网络的训练。

5)保证输出数据中数值小的不被吞食。

三:归一化的类型1:线性归一化

线性归一化也被称为最小-最大规范化;离散标准化,是对原始数据的线性变换,将数据值映射到[0,1]之间。用公式表示为:

差标准化保留了原来数据中存在的关系,是消除量纲和数据取值范围影响的最简单的方法。代码实现如下:

def MaxMinNormalization(x,Max,Min): x = (x - Min) / (Max - Min); return x

适用范围:比较适用在数值比较集中的情况

缺点:1)如果max和min不稳定,很容易使得归一化的结果不稳定,使得后续使用效果也不稳定。如果遇到超过目前属性[min,max]取值范围的时候,会引起系统报错。需要重新确定min和max。

2)如果数值集中的某个数值很大,则规范化后各值接近于0,并且将会相差不大。(如 1,1.2,1.3,1.4,1.5,1.6,10)这组数据。

2:零-均值归一化(Z-score标准化)

Z-score标准化也被称为标准差标准化,经过处理的数据的均值为0,标准差为1。其转化公式为:

其中为原始数据的均值,为原始数据的标准差,是当前用的最多的标准化公式

这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,这里的关键在于复合标准正态分布

代码实现如下:

def Z_ScoreNormalization(x,mu,sigma): x = (x - mu) / sigma; return x3:小数定标规范化

这种方法通过移动属性值的小数数位,将属性值映射到[-1,1]之间,移动的小数位数取决于属性值绝对值的最大值。转换公式为:

几种常见的归一化方法(常见的归中反应有哪些)

4:非线性归一化 

这个方法包括log,指数,正切

适用范围:经常用在数据分析比较大的场景,有些数值很大,有些很小,将原始值进行映射。

四:批归一化(BatchNormalization)1:引入

在以往的神经网络训练时,仅仅只对输入层数据进行归一化处理,却没有在中间层进行归一化处理。虽然我们对输入数据进行了归一化处理,但是输入数据经过了这样的矩阵乘法之后,其数据分布很可能发生很大改变,并且随着网络的层数不断加深。数据分布的变化将越来越大。因此这种在神经网络中间层进行的归一化处理,使得训练效果更好的方法就被称为批归一化(BN)

2:BN算法的优点

1)减少了人为选择参数

2)减少了对学习率的要求,我们可以使用初始状态下很大的学习率或者当使用较小的学习率时,算法也能够快速训练收敛。

3)破换了原来的数据分布,一定程度上缓解了过拟合(防止每批训练中某一个样本经常被挑选到)

4)减少梯度消失,加快收敛速度,提高训练精度。

3:批归一化(BN)算法流程

输入:上一层输出结果X={x1,x2,.....xm},学习参数,

算法流程:

1)计算上一层输出数据的均值:

其中,m是此次训练样本batch的大小。

2)计算上一层输出数据的标准差:

3)归一化处理得到

公式中的是为了避免分母为0而加进去接近于0的很小的值。

4)重构,对经过上面归一化处理得到的数据进行重构,得到:

其中,为可学习的参数。

详细理解可参考:深度学习基础之归一化

几种常见的归一化方式

本文链接地址:https://www.jiuchutong.com/zhishi/294568.html 转载请保留说明!

上一篇:网络工程师笔记(网络工程师笔记大全)

下一篇:YOLOv8代码上线,官方宣布将发布论文,附精度速度初探和对比总结(yolov1代码)

  • 跨省异地购买房产对外销售
  • 股份有限公司董事会决议必须经过
  • 企业所得税零申报表怎么填写
  • 计提工资需要纳税调整吗
  • 手撕发票怎么领取需要什么证件
  • 开广告公司需要营业执照吗
  • 公司注销后专利还能转让吗
  • 房租费没有发票怎么做账务处理
  • 建筑工程公司涉及的会计科目
  • 暂估入账估低了怎么办
  • 实收资本属于会计科目吗
  • 属于制造费用的有
  • 出口商品一定要有条形码吗
  • 案例分析个人总结报告
  • 小规模专票冲红怎么操作
  • 促销费属于哪个税目
  • 票据转让后本公司还有责任吗
  • 长期包租收入如何进行会计处理
  • 拿回费用票普票忘记入账怎么办?
  • 1697509063
  • 外资公司股东要求
  • 小型微利企业所得税率
  • 雨林木风 u盘
  • win7为什么还有人用
  • win10开机强制进入
  • 折扣促销方式
  • PasSrv.exe - PasSrv是什么进程 有什么用
  • php教程 csdn
  • 固定资产投资账务处理
  • 导航栏不变,切换怎么办
  • 怎么做外资企业赚钱
  • php 获取文件类型
  • django cookie
  • 玄武湖公园游玩
  • 贷款的银行卡叫什么
  • thinkphp import
  • 发票中的密码区是如何形成的
  • 计算机网络拓扑结构有哪些
  • 所得税申报表营业成本包括管理费用吗
  • sql语句的查询语句
  • 总结帝国cms内容是什么
  • 企业转让商品取得的税收
  • 企业会计准则每股收益
  • 固定资产转在建工程
  • 售后回购确认收入的时间
  • 非定额备用金的使用范围
  • 事业单位体检费标准是多少
  • 一般纳税人发生应税销售行为向购买方收取
  • 固定资产计提折旧凭证怎么做
  • 物流公司挂靠会计处理?
  • 待摊费用如何做账 税金怎么处理
  • 进项留抵月末要结转吗
  • 免税苗木发票如何申报
  • 收到国库退款
  • 公司五金是哪五金
  • 营业外支出包括
  • 民间非营利组织会计制度最新版
  • 进项税额抵扣不完要做分录吗
  • 销售使用过的汽车增值税税率
  • 当月发生的费用下月支付
  • 旅游饮食服务企业财务会计制度
  • mysql 备份和恢复
  • sqlserver如何保留两位小数
  • sql语句连接方式
  • win7鼠标右键一闪就没了
  • Win10系统任务栏一直转圈
  • ubuntu20设置
  • linux怎样浏览文件中的内容
  • 安装系统需要什么工具
  • win10升级补丁位置
  • unity优化技术
  • nodejs stdin
  • 如何理解shell
  • shell脚本怎么写循环
  • js数组菜鸟教程
  • linux装python环境
  • jquery 插件编写
  • 留抵税额怎么形成的
  • 注册海外公司如何注册
  • 烟叶进口关税
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设