位置: IT常识 - 正文

目标检测数据预处理——根据部件类别按照特定位置拼图,缩小学习空间(目标检测现状)

编辑:rootadmin
目标检测数据预处理——根据部件类别按照特定位置拼图,缩小学习空间

推荐整理分享目标检测数据预处理——根据部件类别按照特定位置拼图,缩小学习空间(目标检测现状),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:目标检测数据增强方法,目标检测数据预处理,目标检测数据分析,目标检测数据预测分析,目标检测数据预测方法,目标检测数据增广,目标检测数据预测方法,目标检测数据预测方法,内容如对您有帮助,希望把文章链接给更多的朋友!

首先放效果图,更直观看到本片是要干嘛的: 如图,就是将大图划分为4×4宫格的,4个部件类的目标框按照固定位置拼图,其中head、body的大图为每个宫格一张图,hand、foot的小图为每个宫格2×2张图(因为hand、foot截下来的图片都普遍很小,为了不resize太多而太模糊)。 每个部件类别的小图拼在一起,实验目标检测算法是否会特定区域关注特定目标从而达到缩小学习空间的目的(为了控制变量,算法本身的位置变换类的数据增强要关闭)。 这里的的部件指的是一类目标,比如head包括head、hat等在头部区域内的目标。每类部件的图片是根据部件截图的方式获得的。

准备目标检测数据预处理——根据部件类别按照特定位置拼图,缩小学习空间(目标检测现状)

首先是将数据的json格式转化为txt格式的py文件json2txt.py:

import jsonimport osimport cv2print(cv2.__version__)def getBoundingBox(points): xmin = points[0][0] xmax = points[0][0] ymin = points[0][1] ymax = points[0][1] for p in points: if p[0] > xmax: xmax = p[0] elif p[0] < xmin: xmin = p[0] if p[1] > ymax: ymax = p[1] elif p[1] < ymin: ymin = p[1] return [int(xmin), int(xmax), int(ymin), int(ymax)]def json2txt(json_path, txt_path): json_data = json.load(open(json_path)) img_h = json_data["imageHeight"] img_w = json_data["imageWidth"] shape_data = json_data["shapes"] shape_data_len = len(shape_data) img_name = os.path.split(json_path)[-1].split(".json")[0] name = img_name + '.jpg' data = '' for i in range(shape_data_len): lable_name = shape_data[i]["label"] points = shape_data[i]["points"] [xmin, xmax, ymin, ymax] = getBoundingBox(points) if xmin <= 0: xmin = 0 if ymin <= 0: ymin = 0 if xmax >= img_w: xmax = img_w - 1 if ymax >= img_h: ymax = img_h - 1 b = name + ' ' + lable_name + ' ' + str(xmin) + ' ' + str(ymin) + ' ' + str(xmax) + ' ' + str(ymax) # print(b) data += b + '\n' with open(txt_path + '/' + img_name + ".txt", 'w', encoding='utf-8') as f: f.writelines(data)if __name__ == "__main__": json_path = "/data/cch/yolov5-augment/train/json" saveTxt_path = "/data/cch/yolov5-augment/train/txt" filelist = os.listdir(json_path) for file in filelist: old_dir = os.path.join(json_path, file) if os.path.isdir(old_dir): continue filetype = os.path.splitext(file)[1] if(filetype != ".json"): continue json2txt(old_dir, saveTxt_path)def main_import(json_path, txt_path): filelist = os.listdir(json_path) for file in filelist: old_dir = os.path.join(json_path, file) if os.path.isdir(old_dir): continue filetype = os.path.splitext(file)[1] if(filetype != ".json"): continue json2txt(old_dir, txt_path)

随机取了一个txt文件,查看其格式:

body_21.jpg cloth 51 12 255 270body_21.jpg hand 50 206 79 257body_21.jpg hand 195 217 228 269body_21.jpg other 112 0 194 1

格式:为图片名 类名 x1 y1 x2 y2(为目标框的左上右下角坐标,此txt格式并非yolo训练的darknet格式)。 然后是将数据的txt格式转化为darknet格式的py文件modeTxt.py:

import osfrom numpy.lib.twodim_base import triu_indices_fromimport pandas as pdfrom glob import globimport cv2import codecsdef txt2darknet(txt_path, img_path, saved_path): data = pd.DataFrame() filelist = os.listdir(txt_path) for file in filelist: if not os.path.splitext(file)[-1] == ".txt": continue # print(file) file_path = os.path.join(txt_path, file) filename = os.path.splitext(file)[0] imgName = filename + '.jpg' imgPath = os.path.join(img_path, imgName) img = cv2.imread(imgPath) [img_h, img_w, _] = img.shape data = "" with codecs.open(file_path, 'r', encoding='utf-8',errors='ignore') as f1: for line in f1.readlines(): line = line.strip('\n') a = line.split(' ') if a[1] == 'other' or a[1] == 'mask' or a[1] == 'del': continue # if a[1] == 'mouth': # a[1] = '0' # elif a[1] == 'wearmask': # a[1] = '1' if a[1] == 'head': a[1] = '0' elif a[1] == 'hat': a[1] = '1' elif a[1] == 'helmet': a[1] = '2' elif a[1] == 'eye': a[1] = '3' elif a[1] == 'glasses' or a[1] == 'glass': a[1] = '4' '''这里根据自己的类别名称及顺序''' x1 = float(a[2]) y1 = float(a[3]) w = float(a[4]) - float(a[2]) h = float(a[5]) - float(a[3]) # if w <= 15 and h <= 15: continue center_x = float(a[2]) + w / 2 center_y = float(a[3]) + h / 2 a[2] = str(center_x / img_w) a[3] = str(center_y / img_h) a[4] = str(w / img_w) a[5] = str(h / img_h) b = a[1] + ' ' + a[2] + ' ' + a[3] + ' ' + a[4] + ' ' + a[5] # print(b) data += b + '\n' with open(saved_path + '/' + filename + ".txt", 'w', encoding='utf-8') as f2: f2.writelines(data) print(data)txt_path = '/data/cch/yolov5/runs/detect/hand_head_resize/labels'saved_path = '/data/cch/yolov5/runs/detect/hand_head_resize/dr'img_path = '/data/cch/data/pintu/test/hand_head_resize/images'if __name__ == '__main__': txt2darknet(txt_path, img_path, saved_path)

以上两个转换代码都是在拼图当中会调用到。

拼图

下面开始我们的拼图代码:

'''4*4左上五个 1 2 3 5 6 head左下五个 9 10 11 13 14 body右上三个 4 7 8 各划分4宫格 hand右下三个 12 15 16 各划分4宫格 foot针对于部件拼图,每个部件一个文件夹,image和json的地址都取总地址'''import sysimport codecsimport randomimport PIL.Image as Imageimport osimport cv2sys.path.append("/data/cch/拼图代码/format_transform")import json2txtimport modeTxtimport shutil# 定义图像拼接函数def image_compose(imgsize, idx, ori_tmp, num, save_path, gt_resized_path, flag): to_image = Image.new('RGB', (imgsize, imgsize)) #创建一个新图 new_name = "" for y in range(idx): for x in range(idx): index = y*idx + x if index >= len(ori_tmp): break open_path = [gt_resized_path, small_pintu_foot, small_pintu_hand] for op in open_path: if os.path.exists(os.path.join(op, ori_tmp[index])): to_image.paste(Image.open(os.path.join(op, ori_tmp[index])), ( int(x * (imgsize / idx)), int(y * (imgsize / idx)))) break else: continue new_name = os.path.join(save_path, flag + str(num) + ".jpg") to_image.save(new_name) # 保存新图 # print(new_name) return new_namedef labels_merge(imgsize, idx, ori_tmp, new_name, txt_resized_path, txt_pintu_path): data = "" for y in range(idx): for x in range(idx): index = y*idx + x if index >= len(ori_tmp): break txt_path = os.path.join(txt_resized_path, ori_tmp[index].split(".")[0] + ".txt") if not os.path.exists(txt_path): txt_path = os.path.join(txt_pintu_path_small, ori_tmp[index].split(".")[0] + ".txt") try: os.path.exists(txt_path) except: print(txt_path, "file not exists!") if os.path.exists(txt_path): with codecs.open(txt_path, 'r', encoding='utf-8',errors='ignore') as f1: for line in f1.readlines(): line = line.strip('\n') a = line.split(' ') a[2] = str(float(a[2]) + (x * (imgsize / idx))) a[3] = str(float(a[3]) + (y * (imgsize / idx))) a[4] = str(float(a[4]) + (x * (imgsize / idx))) a[5] = str(float(a[5]) + (y * (imgsize / idx))) b =a[0] + ' ' + a[1] + ' ' + a[2] + ' ' + a[3] + ' ' + a[4] + ' ' + a[5] data += b + "\n" write_path = os.path.join(txt_pintu_path, os.path.splitext(new_name)[0].split("/")[-1] + ".txt") with open(write_path, 'w', encoding='utf-8') as f2: f2.writelines(data)def pintu2black(txt_pintu_path, save_path, to_black_num, to_black_min_num, label_black): files = os.listdir(txt_pintu_path) for file in files: img_path = os.path.join(save_path, os.path.splitext(file)[0] + ".jpg") img_origal = cv2.imread(img_path) data = "" with codecs.open(txt_pintu_path+"/"+file, encoding="utf-8", errors="ignore") as f1: for line in f1.readlines(): line = line.strip("\n") a = line.split(" ") xmin = int(eval(a[2])) ymin = int(eval(a[3])) xmax = int(eval(a[4])) ymax = int(eval(a[5])) if ((xmax - xmin < to_black_num) and (ymax - ymin < to_black_num)) or \ ((xmax - xmin < to_black_min_num) or (ymax - ymin < to_black_min_num)) \ or a[1] in label_black: img_origal[ymin:ymax, xmin:xmax, :] = (0, 0, 0) cv2.imwrite(img_path, img_origal) line = "" if line: data += line + "\n" with open(txt_pintu_path+"/"+file, 'w', encoding='utf-8') as f2: f2.writelines(data) # print(data)def gt_distribute(images_path, ori, gt_resized_path, txt_path, gt_range): image_names = os.listdir(images_path) for image_name in image_names: if not os.path.splitext(image_name)[-1] == ".jpg": continue imgPath = os.path.join(images_path, image_name) img = cv2.imread(imgPath) gt_resized_name = gt_resize(gt_resized_path, txt_path, image_name, img, gt_range, 2) ori.append(gt_resized_name)def gt_resize(gt_resized_path, txt_path, image_name, img, img_size, x): if not os.path.exists(gt_resized_path): os.mkdir(gt_resized_path) [img_h, img_w, _] = img.shape img_read = [0, 0, 0] if img_h < img_w: precent = img_size / img_w img_read = cv2.resize(img, (img_size, int(img_h * precent)), interpolation=cv2.INTER_CUBIC) else: precent = img_size / img_h img_read = cv2.resize(img, (int(img_w * precent), img_size), interpolation=cv2.INTER_CUBIC) img_resized = gt_resized_path + "/" + image_name.split(".")[0] + "_" + str(x) + ".jpg" cv2.imwrite(img_resized, img_read) txt_name = txt_path + "/" + image_name.split(".")[0] + ".txt" txt_resized_name = gt_resized_path + "/" + image_name.split(".")[0] + "_" + str(x) + ".txt" if os.path.exists(txt_name): data = "" with codecs.open(txt_name, 'r', encoding='utf-8',errors='ignore') as f1: for line in f1.readlines(): line = line.strip('\n') a = line.split(' ') a[2] = str(float(a[2]) * precent) a[3] = str(float(a[3]) * precent) a[4] = str(float(a[4]) * precent) a[5] = str(float(a[5]) * precent) b =a[0] + ' ' + a[1] + ' ' + a[2] + ' ' + a[3] + ' ' + a[4] + ' ' + a[5] data += b + "\n" with open(txt_resized_name, 'w', encoding='utf-8') as f2: f2.writelines(data) return img_resized.split("/")[-1]def pintu(idx, ori, img_threshold, imgsize, save_path, gt_resized_path, txt_pintu_path, flag): num = 0 if flag != "wear_" : random.shuffle(ori) picknum = idx * idx index = 0 while num < int(img_threshold): ori_tmp = [] # random.sample(ori, picknum) if index >= len(ori) and flag != "wear_" : random.shuffle(ori) index = 0 ori_tmp = ori[index:index+picknum] index = index + picknum new_name = image_compose(imgsize, idx, ori_tmp, num, save_path, gt_resized_path, flag) labels_merge(imgsize, idx, ori_tmp, new_name, gt_resized_path, txt_pintu_path) ori_tmp.clear() num += 1 print(flag, num, len(ori))if __name__ == "__main__": images_path = '/data/cch/test' # 图片集地址 json_path = "/data/cch/test" save_path = '/data/cch/save' if not os.path.exists(save_path): os.mkdir(save_path) else: shutil.rmtree(save_path) os.mkdir(save_path) tmp = "/data/cch/pintu_data/save/tmp" if not os.path.exists(tmp): os.mkdir(tmp) else: shutil.rmtree(tmp) os.mkdir(tmp) gt_resized_path = os.path.join(tmp, "gt_resized") txt_path = os.path.join(tmp, "txt") # 原数据txt txt_pintu_path = os.path.join(tmp, "txt_pintu") txt_pintu_path_small = os.path.join(tmp, "txt_pintu_small") small_pintu_foot = os.path.join(tmp, "pintu_foot") small_pintu_hand = os.path.join(tmp, "pintu_hand") os.mkdir(txt_path) os.mkdir(txt_pintu_path) os.mkdir(txt_pintu_path_small) os.mkdir(small_pintu_foot) os.mkdir(small_pintu_hand) label_black = ["other"] imgsize = 416 to_black_num = 15 to_black_min_num = 5 gt_range_large = int(imgsize / 4) gt_range_small = int(imgsize / 8) json_dirs = os.listdir(json_path) for json_dir in json_dirs: json_ori_dir = os.path.join(json_path, json_dir) txt_dir = os.path.join(txt_path, json_dir) os.mkdir(txt_dir) json2txt.main_import(json_ori_dir, txt_dir) # foot ori_foot = [] foot_images = os.path.join(images_path, "foot") foot_txt = os.path.join(txt_path, "foot") gt_distribute(foot_images, ori_foot, gt_resized_path, foot_txt, gt_range_small) img_threshold = int(len(ori_foot) / 4 * 1.6) idx = 2 pintu(idx, ori_foot, img_threshold, int(imgsize/4), small_pintu_foot, gt_resized_path,\ txt_pintu_path_small, "foot_") # hand ori_hand = [] hand_images = os.path.join(images_path, "hand") hand_txt = os.path.join(txt_path, "hand") gt_distribute(hand_images, ori_hand, gt_resized_path, hand_txt, gt_range_small) img_threshold = int(len(ori_hand) / 4 * 1.6) idx = 2 pintu(idx, ori_hand, img_threshold, int(imgsize/4), small_pintu_hand, gt_resized_path,\ txt_pintu_path_small, "hand_") # head ori_head = [] head_images = os.path.join(images_path, "head") head_txt = os.path.join(txt_path, "head") gt_distribute(head_images, ori_head, gt_resized_path, head_txt, gt_range_large) # body ori_body = [] body_images = os.path.join(images_path, "body") body_txt = os.path.join(txt_path, "body") gt_distribute(body_images, ori_body, gt_resized_path, body_txt, gt_range_large) # pintu ori = [] idx = 4 ori_foot = os.listdir(small_pintu_foot) ori_hand = os.listdir(small_pintu_hand) random.shuffle(ori_foot) random.shuffle(ori_hand) random.shuffle(ori_head) random.shuffle(ori_body) [idx_hand, idx_foot, idx_head, idx_body] = [0, 0, 0, 0] img_threshold = int((len(ori_hand) + len(ori_foot) + len(ori_head) + len(ori_body)) / (idx*idx) * 1.5) while True: for i in range(idx*idx): if i in [0,1,2,4,5]: if idx_head >= len(ori_head): random.shuffle(ori_head) idx_head = 0 ori.append(ori_head[idx_head]) idx_head += 1 elif i in [3,6,7]: if idx_hand >= len(ori_hand): random.shuffle(ori_hand) idx_hand = 0 ori.append(ori_hand[idx_hand]) idx_hand += 1 elif i in [8,9,10,12,13]: if idx_body >= len(ori_body): random.shuffle(ori_body) idx_body = 0 ori.append(ori_body[idx_body]) idx_body += 1 elif i in [11,14,15]: if idx_foot >= len(ori_foot): random.shuffle(ori_foot) idx_foot = 0 ori.append(ori_foot[idx_foot]) idx_foot += 1 if int(len(ori)/(idx*idx)) > img_threshold: break pintu(idx, ori, int(len(ori)/(idx*idx)), imgsize, save_path, gt_resized_path,\ txt_pintu_path, "wear_") pintu2black(txt_pintu_path, save_path, to_black_num, to_black_min_num, label_black) # input() modeTxt.txt2darknet(txt_pintu_path, save_path, save_path) shutil.rmtree(tmp)

这里的输入地址是4个部件的总地址,如图:

本文链接地址:https://www.jiuchutong.com/zhishi/295226.html 转载请保留说明!

上一篇:javaweb案例一(javaweb简单项目案例)

下一篇:【JSP课程设计】个人信息管理系统(代码保姆级)(jsp课程设计含源代码)

  • 外贸企业指的是什么
  • 个人承包工程怎么交个税
  • 销货清单和送货单的区别
  • 2020年建筑企业税收优惠政策
  • 公司购车预计净残值率怎么计算
  • 哪些企业税收优惠
  • 收到发票未付款可以抵扣吗
  • 社保扣除的是当月还是上个月的
  • 行业协会收取的服务费
  • 一般纳税人出租不动产增值税税率
  • 增值税专用发票和普通发票的区别
  • 单位没车能用停车票不能用加油票吗?
  • 进项明细和开票明细不一致怎么办
  • 哪些项目可以免征个人所得税
  • 发票对方已认证怎么冲红
  • 无发票的支出如何入账
  • 季度报税过了怎么办
  • 纳税人享受增值服务
  • 企业所得税汇算清缴表
  • 固定资产双倍余额递减法计提折旧公式
  • 准予从销项税额中扣除的有
  • 什么是会计科目?为什么要设置会计科目?
  • 如何关闭开始菜单快捷键
  • typecho安装插件
  • 中秋买东西有讲究吗?
  • 通行证普通发票放在凭证哪里
  • php常用设计模式(大总结)
  • PHP:proc_close()的用法_命令行函数
  • 科技三项费用拨款共计5000万元
  • 灯光璀璨的夜晚
  • centos安装epel
  • while循环语法结构
  • 企业实缴各类税金的总额
  • 学习笔记——Django项目的删除数据、查询数据(filter、get、exclude)
  • 给中间人回扣犯罪吗
  • 零申报年报需要哪些表格
  • db2运维命令
  • mysql数据库操作中,use是用来做什么的?
  • 买车挂公司名下的坏处
  • 企业制造费用包括
  • sqlserver日期加减月份
  • 公司送礼计入什么会计科目
  • 发票收款人和复核人在哪儿政
  • 外贸公司是不是什么都做的?
  • 收到返还工会经费账务处理
  • 免税小规模企业增值税申报表怎么填
  • 房租没有发票如何交税
  • 税局代开的法律顾问费能否抵扣?
  • 企业实收资本怎么计算
  • 为什么设置辅警
  • 月末结转各项费用支出479000
  • 餐饮行业月末结转成本怎么算
  • mysql常用命令语句
  • mysql 免安装版
  • windowsxp休眠设置
  • win8怎么禁用强制驱动签名
  • winxp怎么装系统
  • 怎么删除多余的word的页数
  • linux怎么使用无线网卡
  • 2021年win10累积更新
  • navapp.exe - navapp是什么进程文件 作用是什么
  • 装载win10系统
  • win10系统用正版有什么好处
  • 按住鼠标右键拖动文件
  • easyui validatebox验证
  • field.set方法
  • opengl3d
  • pycharm中文教程
  • sed查找字符串
  • nodejs拼接路径的方法
  • python的读取和写入
  • 对象类型怎么填
  • [置顶] 安卓手电筒小程序
  • js 工作流
  • 浙江省国税电子税务局如何新增企业
  • 广州市地税
  • 税务总局副局长饶
  • 中国税务局河北省税务局官网
  • 走逃失踪纳税人如何处理
  • 北京税务师取消了吗
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设