位置: IT常识 - 正文

目标检测数据预处理——根据部件类别按照特定位置拼图,缩小学习空间(目标检测现状)

编辑:rootadmin
目标检测数据预处理——根据部件类别按照特定位置拼图,缩小学习空间

推荐整理分享目标检测数据预处理——根据部件类别按照特定位置拼图,缩小学习空间(目标检测现状),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:目标检测数据增强方法,目标检测数据预处理,目标检测数据分析,目标检测数据预测分析,目标检测数据预测方法,目标检测数据增广,目标检测数据预测方法,目标检测数据预测方法,内容如对您有帮助,希望把文章链接给更多的朋友!

首先放效果图,更直观看到本片是要干嘛的: 如图,就是将大图划分为4×4宫格的,4个部件类的目标框按照固定位置拼图,其中head、body的大图为每个宫格一张图,hand、foot的小图为每个宫格2×2张图(因为hand、foot截下来的图片都普遍很小,为了不resize太多而太模糊)。 每个部件类别的小图拼在一起,实验目标检测算法是否会特定区域关注特定目标从而达到缩小学习空间的目的(为了控制变量,算法本身的位置变换类的数据增强要关闭)。 这里的的部件指的是一类目标,比如head包括head、hat等在头部区域内的目标。每类部件的图片是根据部件截图的方式获得的。

准备目标检测数据预处理——根据部件类别按照特定位置拼图,缩小学习空间(目标检测现状)

首先是将数据的json格式转化为txt格式的py文件json2txt.py:

import jsonimport osimport cv2print(cv2.__version__)def getBoundingBox(points): xmin = points[0][0] xmax = points[0][0] ymin = points[0][1] ymax = points[0][1] for p in points: if p[0] > xmax: xmax = p[0] elif p[0] < xmin: xmin = p[0] if p[1] > ymax: ymax = p[1] elif p[1] < ymin: ymin = p[1] return [int(xmin), int(xmax), int(ymin), int(ymax)]def json2txt(json_path, txt_path): json_data = json.load(open(json_path)) img_h = json_data["imageHeight"] img_w = json_data["imageWidth"] shape_data = json_data["shapes"] shape_data_len = len(shape_data) img_name = os.path.split(json_path)[-1].split(".json")[0] name = img_name + '.jpg' data = '' for i in range(shape_data_len): lable_name = shape_data[i]["label"] points = shape_data[i]["points"] [xmin, xmax, ymin, ymax] = getBoundingBox(points) if xmin <= 0: xmin = 0 if ymin <= 0: ymin = 0 if xmax >= img_w: xmax = img_w - 1 if ymax >= img_h: ymax = img_h - 1 b = name + ' ' + lable_name + ' ' + str(xmin) + ' ' + str(ymin) + ' ' + str(xmax) + ' ' + str(ymax) # print(b) data += b + '\n' with open(txt_path + '/' + img_name + ".txt", 'w', encoding='utf-8') as f: f.writelines(data)if __name__ == "__main__": json_path = "/data/cch/yolov5-augment/train/json" saveTxt_path = "/data/cch/yolov5-augment/train/txt" filelist = os.listdir(json_path) for file in filelist: old_dir = os.path.join(json_path, file) if os.path.isdir(old_dir): continue filetype = os.path.splitext(file)[1] if(filetype != ".json"): continue json2txt(old_dir, saveTxt_path)def main_import(json_path, txt_path): filelist = os.listdir(json_path) for file in filelist: old_dir = os.path.join(json_path, file) if os.path.isdir(old_dir): continue filetype = os.path.splitext(file)[1] if(filetype != ".json"): continue json2txt(old_dir, txt_path)

随机取了一个txt文件,查看其格式:

body_21.jpg cloth 51 12 255 270body_21.jpg hand 50 206 79 257body_21.jpg hand 195 217 228 269body_21.jpg other 112 0 194 1

格式:为图片名 类名 x1 y1 x2 y2(为目标框的左上右下角坐标,此txt格式并非yolo训练的darknet格式)。 然后是将数据的txt格式转化为darknet格式的py文件modeTxt.py:

import osfrom numpy.lib.twodim_base import triu_indices_fromimport pandas as pdfrom glob import globimport cv2import codecsdef txt2darknet(txt_path, img_path, saved_path): data = pd.DataFrame() filelist = os.listdir(txt_path) for file in filelist: if not os.path.splitext(file)[-1] == ".txt": continue # print(file) file_path = os.path.join(txt_path, file) filename = os.path.splitext(file)[0] imgName = filename + '.jpg' imgPath = os.path.join(img_path, imgName) img = cv2.imread(imgPath) [img_h, img_w, _] = img.shape data = "" with codecs.open(file_path, 'r', encoding='utf-8',errors='ignore') as f1: for line in f1.readlines(): line = line.strip('\n') a = line.split(' ') if a[1] == 'other' or a[1] == 'mask' or a[1] == 'del': continue # if a[1] == 'mouth': # a[1] = '0' # elif a[1] == 'wearmask': # a[1] = '1' if a[1] == 'head': a[1] = '0' elif a[1] == 'hat': a[1] = '1' elif a[1] == 'helmet': a[1] = '2' elif a[1] == 'eye': a[1] = '3' elif a[1] == 'glasses' or a[1] == 'glass': a[1] = '4' '''这里根据自己的类别名称及顺序''' x1 = float(a[2]) y1 = float(a[3]) w = float(a[4]) - float(a[2]) h = float(a[5]) - float(a[3]) # if w <= 15 and h <= 15: continue center_x = float(a[2]) + w / 2 center_y = float(a[3]) + h / 2 a[2] = str(center_x / img_w) a[3] = str(center_y / img_h) a[4] = str(w / img_w) a[5] = str(h / img_h) b = a[1] + ' ' + a[2] + ' ' + a[3] + ' ' + a[4] + ' ' + a[5] # print(b) data += b + '\n' with open(saved_path + '/' + filename + ".txt", 'w', encoding='utf-8') as f2: f2.writelines(data) print(data)txt_path = '/data/cch/yolov5/runs/detect/hand_head_resize/labels'saved_path = '/data/cch/yolov5/runs/detect/hand_head_resize/dr'img_path = '/data/cch/data/pintu/test/hand_head_resize/images'if __name__ == '__main__': txt2darknet(txt_path, img_path, saved_path)

以上两个转换代码都是在拼图当中会调用到。

拼图

下面开始我们的拼图代码:

'''4*4左上五个 1 2 3 5 6 head左下五个 9 10 11 13 14 body右上三个 4 7 8 各划分4宫格 hand右下三个 12 15 16 各划分4宫格 foot针对于部件拼图,每个部件一个文件夹,image和json的地址都取总地址'''import sysimport codecsimport randomimport PIL.Image as Imageimport osimport cv2sys.path.append("/data/cch/拼图代码/format_transform")import json2txtimport modeTxtimport shutil# 定义图像拼接函数def image_compose(imgsize, idx, ori_tmp, num, save_path, gt_resized_path, flag): to_image = Image.new('RGB', (imgsize, imgsize)) #创建一个新图 new_name = "" for y in range(idx): for x in range(idx): index = y*idx + x if index >= len(ori_tmp): break open_path = [gt_resized_path, small_pintu_foot, small_pintu_hand] for op in open_path: if os.path.exists(os.path.join(op, ori_tmp[index])): to_image.paste(Image.open(os.path.join(op, ori_tmp[index])), ( int(x * (imgsize / idx)), int(y * (imgsize / idx)))) break else: continue new_name = os.path.join(save_path, flag + str(num) + ".jpg") to_image.save(new_name) # 保存新图 # print(new_name) return new_namedef labels_merge(imgsize, idx, ori_tmp, new_name, txt_resized_path, txt_pintu_path): data = "" for y in range(idx): for x in range(idx): index = y*idx + x if index >= len(ori_tmp): break txt_path = os.path.join(txt_resized_path, ori_tmp[index].split(".")[0] + ".txt") if not os.path.exists(txt_path): txt_path = os.path.join(txt_pintu_path_small, ori_tmp[index].split(".")[0] + ".txt") try: os.path.exists(txt_path) except: print(txt_path, "file not exists!") if os.path.exists(txt_path): with codecs.open(txt_path, 'r', encoding='utf-8',errors='ignore') as f1: for line in f1.readlines(): line = line.strip('\n') a = line.split(' ') a[2] = str(float(a[2]) + (x * (imgsize / idx))) a[3] = str(float(a[3]) + (y * (imgsize / idx))) a[4] = str(float(a[4]) + (x * (imgsize / idx))) a[5] = str(float(a[5]) + (y * (imgsize / idx))) b =a[0] + ' ' + a[1] + ' ' + a[2] + ' ' + a[3] + ' ' + a[4] + ' ' + a[5] data += b + "\n" write_path = os.path.join(txt_pintu_path, os.path.splitext(new_name)[0].split("/")[-1] + ".txt") with open(write_path, 'w', encoding='utf-8') as f2: f2.writelines(data)def pintu2black(txt_pintu_path, save_path, to_black_num, to_black_min_num, label_black): files = os.listdir(txt_pintu_path) for file in files: img_path = os.path.join(save_path, os.path.splitext(file)[0] + ".jpg") img_origal = cv2.imread(img_path) data = "" with codecs.open(txt_pintu_path+"/"+file, encoding="utf-8", errors="ignore") as f1: for line in f1.readlines(): line = line.strip("\n") a = line.split(" ") xmin = int(eval(a[2])) ymin = int(eval(a[3])) xmax = int(eval(a[4])) ymax = int(eval(a[5])) if ((xmax - xmin < to_black_num) and (ymax - ymin < to_black_num)) or \ ((xmax - xmin < to_black_min_num) or (ymax - ymin < to_black_min_num)) \ or a[1] in label_black: img_origal[ymin:ymax, xmin:xmax, :] = (0, 0, 0) cv2.imwrite(img_path, img_origal) line = "" if line: data += line + "\n" with open(txt_pintu_path+"/"+file, 'w', encoding='utf-8') as f2: f2.writelines(data) # print(data)def gt_distribute(images_path, ori, gt_resized_path, txt_path, gt_range): image_names = os.listdir(images_path) for image_name in image_names: if not os.path.splitext(image_name)[-1] == ".jpg": continue imgPath = os.path.join(images_path, image_name) img = cv2.imread(imgPath) gt_resized_name = gt_resize(gt_resized_path, txt_path, image_name, img, gt_range, 2) ori.append(gt_resized_name)def gt_resize(gt_resized_path, txt_path, image_name, img, img_size, x): if not os.path.exists(gt_resized_path): os.mkdir(gt_resized_path) [img_h, img_w, _] = img.shape img_read = [0, 0, 0] if img_h < img_w: precent = img_size / img_w img_read = cv2.resize(img, (img_size, int(img_h * precent)), interpolation=cv2.INTER_CUBIC) else: precent = img_size / img_h img_read = cv2.resize(img, (int(img_w * precent), img_size), interpolation=cv2.INTER_CUBIC) img_resized = gt_resized_path + "/" + image_name.split(".")[0] + "_" + str(x) + ".jpg" cv2.imwrite(img_resized, img_read) txt_name = txt_path + "/" + image_name.split(".")[0] + ".txt" txt_resized_name = gt_resized_path + "/" + image_name.split(".")[0] + "_" + str(x) + ".txt" if os.path.exists(txt_name): data = "" with codecs.open(txt_name, 'r', encoding='utf-8',errors='ignore') as f1: for line in f1.readlines(): line = line.strip('\n') a = line.split(' ') a[2] = str(float(a[2]) * precent) a[3] = str(float(a[3]) * precent) a[4] = str(float(a[4]) * precent) a[5] = str(float(a[5]) * precent) b =a[0] + ' ' + a[1] + ' ' + a[2] + ' ' + a[3] + ' ' + a[4] + ' ' + a[5] data += b + "\n" with open(txt_resized_name, 'w', encoding='utf-8') as f2: f2.writelines(data) return img_resized.split("/")[-1]def pintu(idx, ori, img_threshold, imgsize, save_path, gt_resized_path, txt_pintu_path, flag): num = 0 if flag != "wear_" : random.shuffle(ori) picknum = idx * idx index = 0 while num < int(img_threshold): ori_tmp = [] # random.sample(ori, picknum) if index >= len(ori) and flag != "wear_" : random.shuffle(ori) index = 0 ori_tmp = ori[index:index+picknum] index = index + picknum new_name = image_compose(imgsize, idx, ori_tmp, num, save_path, gt_resized_path, flag) labels_merge(imgsize, idx, ori_tmp, new_name, gt_resized_path, txt_pintu_path) ori_tmp.clear() num += 1 print(flag, num, len(ori))if __name__ == "__main__": images_path = '/data/cch/test' # 图片集地址 json_path = "/data/cch/test" save_path = '/data/cch/save' if not os.path.exists(save_path): os.mkdir(save_path) else: shutil.rmtree(save_path) os.mkdir(save_path) tmp = "/data/cch/pintu_data/save/tmp" if not os.path.exists(tmp): os.mkdir(tmp) else: shutil.rmtree(tmp) os.mkdir(tmp) gt_resized_path = os.path.join(tmp, "gt_resized") txt_path = os.path.join(tmp, "txt") # 原数据txt txt_pintu_path = os.path.join(tmp, "txt_pintu") txt_pintu_path_small = os.path.join(tmp, "txt_pintu_small") small_pintu_foot = os.path.join(tmp, "pintu_foot") small_pintu_hand = os.path.join(tmp, "pintu_hand") os.mkdir(txt_path) os.mkdir(txt_pintu_path) os.mkdir(txt_pintu_path_small) os.mkdir(small_pintu_foot) os.mkdir(small_pintu_hand) label_black = ["other"] imgsize = 416 to_black_num = 15 to_black_min_num = 5 gt_range_large = int(imgsize / 4) gt_range_small = int(imgsize / 8) json_dirs = os.listdir(json_path) for json_dir in json_dirs: json_ori_dir = os.path.join(json_path, json_dir) txt_dir = os.path.join(txt_path, json_dir) os.mkdir(txt_dir) json2txt.main_import(json_ori_dir, txt_dir) # foot ori_foot = [] foot_images = os.path.join(images_path, "foot") foot_txt = os.path.join(txt_path, "foot") gt_distribute(foot_images, ori_foot, gt_resized_path, foot_txt, gt_range_small) img_threshold = int(len(ori_foot) / 4 * 1.6) idx = 2 pintu(idx, ori_foot, img_threshold, int(imgsize/4), small_pintu_foot, gt_resized_path,\ txt_pintu_path_small, "foot_") # hand ori_hand = [] hand_images = os.path.join(images_path, "hand") hand_txt = os.path.join(txt_path, "hand") gt_distribute(hand_images, ori_hand, gt_resized_path, hand_txt, gt_range_small) img_threshold = int(len(ori_hand) / 4 * 1.6) idx = 2 pintu(idx, ori_hand, img_threshold, int(imgsize/4), small_pintu_hand, gt_resized_path,\ txt_pintu_path_small, "hand_") # head ori_head = [] head_images = os.path.join(images_path, "head") head_txt = os.path.join(txt_path, "head") gt_distribute(head_images, ori_head, gt_resized_path, head_txt, gt_range_large) # body ori_body = [] body_images = os.path.join(images_path, "body") body_txt = os.path.join(txt_path, "body") gt_distribute(body_images, ori_body, gt_resized_path, body_txt, gt_range_large) # pintu ori = [] idx = 4 ori_foot = os.listdir(small_pintu_foot) ori_hand = os.listdir(small_pintu_hand) random.shuffle(ori_foot) random.shuffle(ori_hand) random.shuffle(ori_head) random.shuffle(ori_body) [idx_hand, idx_foot, idx_head, idx_body] = [0, 0, 0, 0] img_threshold = int((len(ori_hand) + len(ori_foot) + len(ori_head) + len(ori_body)) / (idx*idx) * 1.5) while True: for i in range(idx*idx): if i in [0,1,2,4,5]: if idx_head >= len(ori_head): random.shuffle(ori_head) idx_head = 0 ori.append(ori_head[idx_head]) idx_head += 1 elif i in [3,6,7]: if idx_hand >= len(ori_hand): random.shuffle(ori_hand) idx_hand = 0 ori.append(ori_hand[idx_hand]) idx_hand += 1 elif i in [8,9,10,12,13]: if idx_body >= len(ori_body): random.shuffle(ori_body) idx_body = 0 ori.append(ori_body[idx_body]) idx_body += 1 elif i in [11,14,15]: if idx_foot >= len(ori_foot): random.shuffle(ori_foot) idx_foot = 0 ori.append(ori_foot[idx_foot]) idx_foot += 1 if int(len(ori)/(idx*idx)) > img_threshold: break pintu(idx, ori, int(len(ori)/(idx*idx)), imgsize, save_path, gt_resized_path,\ txt_pintu_path, "wear_") pintu2black(txt_pintu_path, save_path, to_black_num, to_black_min_num, label_black) # input() modeTxt.txt2darknet(txt_pintu_path, save_path, save_path) shutil.rmtree(tmp)

这里的输入地址是4个部件的总地址,如图:

本文链接地址:https://www.jiuchutong.com/zhishi/295226.html 转载请保留说明!

上一篇:javaweb案例一(javaweb简单项目案例)

下一篇:【JSP课程设计】个人信息管理系统(代码保姆级)(jsp课程设计含源代码)

  • 小规模纳税人的进项税额怎么处理
  • 申报表货物及劳务是什么
  • 小规模经营租赁开票税率
  • 个人独资企业怎么取钱
  • 职工受到工伤后应该怎么办
  • 税控盘反写显没有数据怎么处理
  • 费用怎么分析
  • 专票当月认证后什么时候抵扣
  • 代扣代缴附加税怎么做账
  • 项目所在地怎么填
  • 生产车间的房屋要交税吗
  • 房地产开发成本费用明细表
  • 现金折扣后退回账户
  • 餐饮企业卖套餐赠送单品要交增值税吗?
  • 土地租赁费含有多少税率
  • 发票添加商品编码怎么填
  • 税种案例分析
  • 电子承兑汇票接收时间是多久
  • 电话费补贴属于免税收入吗
  • 增值税专用发票和普通发票的区别
  • 中国的农业成本为什么高
  • 软件产品即征即退申请表
  • 苹果笔记本下载的itunes在哪
  • win10系统下怎么安装Java JDK及配置环境变量
  • 建筑企业如何预缴企业所得税
  • 7zip怎么压缩文件为rar
  • 销售固定资产税目
  • 预缴土地增值税有滞纳金吗
  • window7无法正常启动怎么办
  • 看望员工生病的家属支付现金如何入账
  • 一般纳税人辅导期什么意思
  • 马尔堡酒庄
  • 供货商倒闭未缴增值税
  • 外籍人员工资薪金扣除
  • yolov5怎么改进
  • 【深度学习】目标检测的性能评价指标,mAP_0.5,mAP_0.5,0.95,0.05
  • 股东以固定资产入股会计处理
  • oc底层原理
  • 房地产企业的开发成本和开发费用有什么区
  • 不得免征和抵扣税额是什么意思
  • 借方贷方有哪些
  • 固定资产是不是非货币性资产
  • 单一窗口退税数据发送
  • 收付转和记账凭证
  • 印花税技术服务合同包括哪些
  • mysql索引优化的方案
  • sql server数据库怎么使用
  • 个体户经营所得税率表
  • 购买员工团体意外险流程
  • 收到厂家返利如何计算成本
  • 企业所得税营业成本包括管理费用吗
  • 固定资产一次性扣除政策
  • 个税手续费返还增值税申报表怎么填
  • 交易性金融资产的入账价值
  • 2021年村级财务管理要点
  • 资产负债表多久编制一次
  • 捐赠 税收
  • 外地预缴怎么算
  • 房屋租赁费如何结转成本
  • 成本费用利润率一般在什么范围
  • 企业的研发活动阶段包括
  • 特殊事项税务处理
  • 如何整理装订记账凭证
  • 防御sql注入的方法有哪几种
  • Linux系统下Qt的基本安装和配置
  • 联想笔记本bios设置启动顺序
  • 苹果怎么格式化彻底
  • 怎么在ubuntu上编程
  • win7安装远程桌面组件
  • ubuntu搭建ss
  • 常用的linux命令大全
  • shell脚本如何注释
  • 人物动画声音随声而动
  • c++ not1
  • css可继承
  • unity 游戏
  • unity 3d教程
  • 中央与地方增值税
  • 如何抵扣税款
  • 国税巡察反馈意见建议
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设