位置: IT常识 - 正文

如何配置openai的返回Stream数据并转发到h5页面按markdown格式流式输出(怎么配置opencv)

编辑:rootadmin
如何配置openai的返回Stream数据并转发到h5页面按markdown格式流式输出

推荐整理分享如何配置openai的返回Stream数据并转发到h5页面按markdown格式流式输出(怎么配置opencv),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:openldap配置,openapi搭建,如何配置opencore,如何配置opencore,配置openfiler详细步骤,如何配置opencv,openpnp配置,如何配置opencv,内容如对您有帮助,希望把文章链接给更多的朋友!

如何配置openai返回数据,保持流式输出,可以分段加载

可以使用OpenAI API的stream参数来实现流式输出,并且可以使用max_tokens参数控制每次返回数据的长度。 以下是一个示例代码,演示如何使用OpenAI API来实现流式输出并分段加载:

pythonimport openai# 连接 OpenAI API openai.api_key = "YOUR_API_KEY" # 设置 OpenAI API 参数 model_engine = "davinci" # 模型引擎 prompt = "你好,我需要帮助进行自然语言处理任务。" # 请求语句 temperature = 0.5 # 温度参数 max_tokens = 100 # 每次最大输出长度 # 获取 OpenAI 返回数据 completions = openai.Completion.create( engine=model_engine, prompt=prompt, temperature=temperature, max_tokens=max_tokens, n=1, stream=True ) # 分段获取数据 for i, text in enumerate(iter(completions.choices), start=1): print(f"============== 第 {i} 段输出 ==============") print(text.text)

在这个示例中,我们将stream参数设置为True,这样OpenAI API将会实时地将数据传输回调用方,并且将返回一个生成器对象(iter(completions.choices)),使得我们可以逐段获取数据并打印出来。 同时,我们使用max_tokens参数来控制每次返回的数据长度,这样也可以有效的避免返回数据过长导致内存不足的问题。 注意,这里的YOUR_API_KEY需要替换为您在OpenAI申请的API密钥。【请求时间:14秒】

openai 返回stream流,是UDP还是TCP,接收stream数据代码DEMO

OpenAI GPT-3 API 返回的是 HTTPS 流,使用的是 TCP 协议。 如果您需要处理从 OpenAI GPT-3 API 返回的数据流,您可以使用 Python 中的 requests 库来处理它。 以下是一个可以接收并处理由 OpenAI GPT-3 API 返回的数据流的示例代码:

pythonimport requests def process_stream(stream): for line in stream.iter_lines(): if line: # 处理返回的数据 print(line.decode('utf-8')) # 发起 API 请求并处理返回的数据流 response = requests.post(url, headers=headers, data=data, stream=True) process_stream(response.iter_lines())

在上面的代码中,我们使用 requests.post 方法发起了一个带有 stream=True 参数的 POST 请求,并将响应保存到 response 变量中。接着,我们调用 process_stream 函数来处理从 API 返回的数据流。在 process_stream 函数中,我们使用 iter_lines 迭代器来逐行处理数据流,并将每行转换为 UTF-8 编码字符串。在这个简单的示例中,我们只是将数据打印到控制台上,但您可以根据实际需求来编写相应的逻辑来处理数据。

接收stream数据的PHP代码示例如下:

php<?php $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, 'STREAM_URL'); curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);curl_setopt($ch, CURLOPT_WRITEFUNCTION, function($curl, $data) { // 处理获得的数据 echo $data; return strlen($data); }); curl_exec($ch); curl_close($ch); ?> 如何配置openai的返回Stream数据并转发到h5页面按markdown格式流式输出(怎么配置opencv)

其中,STREAM_URL 代表 OpenAI 的 stream URL 地址。这段代码会将数据逐步地写到屏幕上。 相应的,接收stream数据的Java代码示例如下:

javaimport java.net.*; import java.io.*; public class StreamReceiver { public static void main(String[] args) throws Exception { URL streamURL = new URL("STREAM_URL"); try (BufferedReader reader = new BufferedReader( new InputStreamReader(streamURL.openStream()))) { String line; while ((line = reader.readLine()) != null) { // 处理获得的数据 System.out.println(line); }} } }

同样的,STREAM_URL 代表 OpenAI 的 stream URL 地址。这段代码会将数据逐步地输出到命令行界面上

PHP代码示例:

<?php // 请求OpenAI接口获取stream数据,并转发到H5页面端 $openAIUrl = 'https://api.openai.com/v1/engines/davinci-codex/completions'; $headers = array( 'Content-Type: application/json', 'Authorization: Bearer <YOUR_API_KEY>' ); $data = array( 'prompt' => 'Hello, world!', 'max_tokens' => 5, 'temperature' => 0.7 ); $ch = curl_init(); curl_setopt($ch, CURLOPT_URL, $openAIUrl); curl_setopt($ch, CURLOPT_POST, true); curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($data)); curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); curl_setopt($ch, CURLOPT_HTTPHEADER, $headers); curl_setopt($ch, CURLOPT_FOLLOWLOCATION, true);$output = fopen('php://output', 'w'); curl_setopt($ch, CURLOPT_WRITEFUNCTION, function ($ch, $chunk) use ($output) { fwrite($output, $chunk); return strlen($chunk); }); curl_exec($ch); fclose($output); // 将stream数据转发给H5页面端 header('Content-Type: text/event-stream'); header('Cache-Control: no-cache'); header('Connection: keep-alive'); header('Access-Control-Allow-Origin: *'); fpassthru($output);

Java代码示例:

import java.io.IOException;import java.io.InputStream; import java.io.OutputStream; import java.net.HttpURLConnection; import java.net.URL; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import javax.servlet.AsyncContext; import javax.servlet.ServletException; import javax.servlet.annotation.WebServlet; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; @WebServlet(asyncSupported = true, urlPatterns = {"/stream"}) public class StreamServlet extends HttpServlet { private static final ExecutorService executor = Executors.newCachedThreadPool(); @Override protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { // 创建异步上下文 AsyncContext asyncContext = request.startAsync(); // 提交任务到线程池 executor.submit(() -> { try { // 请求OpenAI接口获取stream数据 URL url = new URL("https://api.openai.com/v1/engines/davinci-codex/completions"); HttpURLConnection conn = (HttpURLConnection) url.openConnection(); conn.setRequestMethod("POST"); conn.setRequestProperty("Content-Type", "application/json"); conn.setRequestProperty("Authorization", "Bearer <YOUR_API_KEY>"); conn.setDoOutput(true); OutputStream out = conn.getOutputStream(); out.write("{\"prompt\": \"Hello, world!\", \"max_tokens\": 5, \"temperature\": 0.7}".getBytes()); out.flush(); out.close(); InputStream in = conn.getInputStream(); response.setContentType("text/event-stream"); response.setHeader("Cache-Control", "no-cache"); response.setHeader("Connection", "keep-alive"); response.setHeader("Access-Control-Allow-Origin", "*"); byte[] buffer = new byte[1024];int count;while ((count = in.read(buffer)) != -1) { // 将stream数据转发给H5页面端 OutputStream outputStream = asyncContext.getResponse().getOutputStream(); String data = new String(buffer, 0, count); outputStream.write(("data: " + data + "\n\n").getBytes()); outputStream.flush(); } in.close(); } catch (IOException e) { e.printStackTrace(); } finally { asyncContext.complete(); } }); } }

Python代码示例:

import requests from flaskimport Flask, Response app = Flask(__name__) @app.route('/stream') def stream(): # 请求OpenAI接口获取stream数据 url = 'https://api.openai.com/v1/engines/davinci-codex/completions' headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer <YOUR_API_KEY>' } data = { 'prompt': 'Hello, world!', 'max_tokens': 5, 'temperature': 0.7 } res = requests.post(url, headers=headers, json=data, stream=True) # 将stream数据转发给H5页面端 def generate(): for chunk in res.iter_content(chunk_size=1024): if chunk: yield 'data: ' + chunk.decode() + '\n\n' return Response(generate(), mimetype='text/event-stream', headers={ 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Access-Control-Allow-Origin': '*' }) if __name__ == '__main__': app.run()

注意:以上代码仅供参考,具体实现需要根据自己的业务需求进行适当修改。

如何让前端Html能显示mardown格式

要在前端HTML中显示Markdown格式,您可以使用一个叫做Markdown解析器的库或工具。下面是一个简单的例子: 1.首先,通过CDN或将其下载到本地文件夹中,引入一个Markdown解析器库,比如marked.js。

html <script src="https://cdn.jsdelivr.net/npm/marked/marked.min.js"></script>在页面上添加一个textarea标签用于输入Markdown格式的文本,添加一个div标签用于显示解析后的HTML内容。javascripthtml <textarea id="mdInput"></textarea> <div id="htmlOutput"></div>在JavaScript中获取textarea的值,将其传递给Markdown解析器,并将输出的HTML代码插入到div中。javascriptvar markdown = document.getElementById('mdInput').value; var html = marked(markdown); document.getElementById('htmlOutput').innerHTML = html;

这样就可以在浏览器中显示Markdown格式的文本了。

类似于ChatGPT网站使用Node.js中的流(Stream)处理技术将输出转换成markdown格式。 流是一种在处理大量数据时很有用的技术,它允许以逐块的方式处理数据而不必等待加载整个数据集。 在ChatGPT网站中,可能使用了类似于以下代码的方法来将输出流转换为markdown格式:

javascript const markdown = require('markdown').markdown; const stream = require('stream'); const outputStream = new stream.Writable({ write(chunk, encoding, callback) { const text = chunk.toString(); const markdownText = markdown.toHTML(text); process.stdout.write(markdownText); callback(); }, }); // Stream output to markdown formatter originalOutputStream.pipe(outputStream);

在这个代码示例中,markdown库用于将输入的纯文本转换为Markdown格式。一个Writable可写流用于接收输出,并将其转换为Markdown格式并将其发送到标准输出流(process.stdout.write())。最后将原始输出流(originalOutputStream)连接到新的可写流(outputStream),并通过该管道输出到标准输出流。 这只是一个简单的示例,实际上,ChatGPT网站可能使用更复杂的技术来流式处理并转换输出到Markdown格式

本文链接地址:https://www.jiuchutong.com/zhishi/295233.html 转载请保留说明!

上一篇:yolov5 anchors 中 K-means聚类

下一篇:Vue项目分包打包配置(包含dev)全过程(vuecli打包项目)

  • 本年计算扣除限额的基数怎么算
  • 城建税借贷方向
  • 附加税退回分录
  • 季度所得税申报表营业收入怎么填
  • 接受捐赠材料需要交税吗
  • 土建工程管理费取费基数
  • 工会经费可以购买购物卡吗
  • 印花税的计税依据怎么算公式
  • 怎么查找企业核算报告
  • 物流分公司怎么运作
  • 出售房产收入计入什么科目
  • 长期股权投资涉及或有对价的帐务处理
  • 延期申报的程序
  • 报关单毛重错了被海关查到
  • 期望值E(X)怎么算例题
  • 预缴税金跨区域涉税在哪查询
  • 期间费用核算内容不应该包括
  • 前期费用会计分录
  • 增值税应税劳务的纳税人是什么意思
  • won11安全启动
  • 出纳员交接工作
  • 代扣可以退款吗
  • 预付账款属于资产性质的账户
  • 银行承兑汇票和银行汇票的区别
  • 收回已核销的坏账并入账是什么意思
  • 浅谈25年Linux内核开发经历总结出来的九条经验
  • php发送电子邮件
  • 有进项没销项怎么处理,可以结转成本吗
  • php socket_read
  • 手机怎么设置无信号
  • vue3 + Tailwind Css + Vite 搭建快速开发前端样式环境
  • 印花税怎么计提和结转
  • phpinclude
  • 沃特金斯格伦州立公园
  • thinkphp获取数据库数据
  • php自动载入自定义函数文件
  • php网站能实现什么效果
  • 增值税申报主表在哪里查询
  • vue3ts
  • 冲红发票操作流程
  • 权益法转成本法其他综合收益需要结转吗
  • 网上抄税报税操作流程
  • 应收票据和应付票据
  • 资产总额不超过5000万是指全年平均收入吗
  • 研发费用加计扣除2022政策
  • dedecms官网
  • 小规模纳税人增值税税率
  • 收回已冲销的应收账款会计分录
  • 进项税额转出更正申报
  • 本月盈利本年亏损要做分录吗
  • 原材料的主要账目有哪些
  • 暂估成本账务处理
  • 财务挂账应该怎么做账
  • 发票开具与小票的关系是怎样的?
  • 附加税怎么算出来的
  • 出口没做免税申请怎么办
  • 库存现金盘点表模板
  • 物业公司转售电费增值税
  • 税务局返还税款账务处理
  • 提供劳务结转的成本计入什么科目
  • 发票缴销了还能恢复吗
  • 员工个人买的保险可以税前扣除吗
  • 核算管理工作
  • mysql常用命令语句
  • iis怎么用
  • Win10 Mobile 10586.11已经在慢速通道推送 着离正式版更近了
  • win10新建文件夹的快捷键是哪个
  • win10周年版
  • 克隆本机系统
  • unityproject
  • linux脚本自启
  • 基于vue的ui框架
  • 新浪微博模仿推特
  • unity3d图形学
  • activity启动原理
  • python怎么在网上赚钱
  • 物业公司收取物业费要交税吗
  • 新土地管理法37条解释
  • 工资个人所得税法
  • 软件企业专项审计
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设