位置: IT常识 - 正文

基于1DCNN(一维卷积神经网络)的目标识别(一维卷积padding)

编辑:rootadmin
基于1DCNN(一维卷积神经网络)的目标识别

推荐整理分享基于1DCNN(一维卷积神经网络)的目标识别(一维卷积padding),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:一维卷积神经网络原理,一维卷积模型,一维卷积模型,一维卷积计算公式,一维卷积模型,一维卷积计算公式,一维卷积padding,一维卷积计算公式,内容如对您有帮助,希望把文章链接给更多的朋友!

简介:研一已经结束,感觉动手能力太差,找了一篇优秀的博主的文章,然后进行学习,奈何

科研小白,代码经过各种查找,终于明白了原理。

在此先感谢博主"秋雨行舟",他还有B站对应的讲解,贼良心的一位博主!!

链接:https://blog.csdn.net/qq_38918049/article/details/124992113?spm=1001.2014.3001.5501

对博主中的代码做了稍许修改,添加了大量注释,以此篇博客记录学习过程中的收获。

数据集:凯斯西储实验室的轴承故障诊断(振动加速度采集的)和我的研究对象很很相似,都是一维时间序列的目标,所以拿来练手。

基于1DCNN(一维卷积神经网络)的目标识别(一维卷积padding)

平台:jupyter notebook,把每一行代码所表述的意思完全展示出来了,更加容易理解代码执行过程,相较于pyhcarm更加友好,对跑神经网络,因为能够直观的看到运行过程。

环境:win10,tensorflow2.1(感觉深度学习,版本可以不要太高,要不然很多不兼容,整着好麻烦,我就是从tensorflow版本2.5降到了2.1,目前为止用的还可以,可能以后还有升级,,,)。

代码介绍:从10个.mat文件中经过一系列数据处理(内容是真滴丰富)分为1500个(784,1)的训练集和750个(784,1)的验证集和测试集,搭建CNN模型(函数式)进行训练,通过测试集进行评估。

代码获取:可以从“秋雨行舟”博主上去找资源,也可以找我啊,我基本上把每行代码都注释了,也欢迎研究一维时间序列目标检测,目标识别的小伙伴一块组队学习啊!

目录

  一.数据预处理

1.1 从.mat文件中读取数据的字典

1.2划分训练集和测试集

1.3训练集,测试集打标签

1.4数据标准化并把测试集再分为测试集和验证集

           二.搭建1DCNN模型

2.1 数据处理

2.2 定义一个保存最佳模型的方法

2.3 搭建模型

2.4 编译模型

2.5训练模型并保存

2.6效果展示(损失,精确对比)

          三.评估模型

 四.混淆矩阵

 五.总结


一.数据预处理1.1 从.mat文件中读取数据的字典# 定义函数把原始数据打包成字典def capture(original_path): files = {} for i in filenames: file_path = os.path.join(d_path, i) file = loadmat(file_path) # loadmat()加载.mat函数 file_keys = file.keys() # 获取加载后的.mat文件的键值,也就是‘12k_Drive_End_B007_0_118.mat’这种 for key in file_keys: # 获取所有文件中结构体中含有字符为DE的数据,并将数据写入字典中 if 'DE' in key: # 这个地方‘DE’在这组数据中都有‘Drive_End’所以相当于遍历了,如果是凯斯西储实验室的其他几组数据,要换一下 files[i] = file[key].ravel() # 转换为一维数组 return filesdata = capture(original_path=d_path)data1.2划分训练集和测试集# 定义参数rate = [0.5, 0.25, 0.25] # 训练集,测试集,验证集划分比例(测试集和验证集这个步骤在一块)number = 300 # 每类样本的数量length = 784 # 样本长度# 定义划分训练集和测试集的函数def slice_enc(data, slice_rate=rate[1] + rate[2]): keys = data.keys() Train_Samples = {} Test_Samples = {} for i in keys: slice_data = data[i] # 遍历到.mat字典的每个值,也就是data的array部分(用键去遍历) all_lenght = len(slice_data) # end_index = int(all_lenght * (1 - slice_rate)) # 感觉这个被山区的注释这一行才对啊,能理解 # 下面是每个.mat数据中的value部分拿出一半做训练集的一部分 samp_train = int(number * (1 - slice_rate)) # 1000(1-0.3) # 不明白这个地方的备注(1000(1-0.3)) 不应该是300*(1-0.5)? Train_sample = [] Test_Sample = [] # 抓取训练数据放到训练集中 for j in range(samp_train): # (遍历150次) # 每个.mat数据的训练集的长度 sample = slice_data[j*150: j*150 + length] # (0:784) 也就是每个训练数据为(784,1) Train_sample.append(sample) # 把每个做训练的部分放到训练集中 # 抓取测试数据 for h in range(number - samp_train): # (遍历150次) sample = slice_data[samp_train*150 + length + h*150: samp_train*150 + length + h*150 + length] # 每条测试数据为(784,1) Test_Sample.append(sample) # 把每个做测试的部分放到测试集中 # 遍历的每条数据把划分的训练数据,测试数据放到对应集合中 Train_Samples[i] = Train_sample Test_Samples[i] = Test_Sample return Train_Samples, Test_Samplestrain,test = slice_enc(data)# 每个.mat数据划分为多少个训练字段,# 所以总共10个原始数据,每个原始数据划分为150个训练字段for i in train.keys(): a = train[i] len(a) print(len(a))[out]:1501501501501501501501501501501.3训练集,测试集打标签# 定义添加标签的函数def add_labels(train_test): X =[] Y = [] label = 0 for i in filenames: # 遍历每个.mat数据,(i=0,第一个mat数据中的150条训练数据的标签设为0) x = train_test[i] X += x lenx = len(x) Y += [label] *lenx label +=1 return X,Y# 为训练集制作标签Train_X ,Train_Y = add_labels(train)# Train_X,Train_Y中1500条训练数据,每150条训练数据对应一个标签,有0-9个10个不同的标签类型1.4数据标准化并把测试集再分为测试集和验证集# 定义标准化函数def scalar_stand(Train_X, Test_X): # 用训练集标准差标准化训练集以及测试集 data_all = np.vstack((Train_X, Test_X)) # 数据降为一维平铺 scalar = preprocessing.StandardScaler().fit(data_all) # sklearn.preprcoessing包下的数据标准化函数 Train_X = scalar.transform(Train_X) #调用 .transform函数对数据进行标准化 Test_X = scalar.transform(Test_X) return Train_X, Test_X# 测试集再分为测试集和验证集(比例1:1)def valid_test_slice(Test_X, Test_Y): test_size = rate[2] / (rate[1] + rate[2]) # n_splits=1,将其分成一组也就是两部分,test_size每组的比例 ss = StratifiedShuffleSplit(n_splits=1, test_size=test_size) # 拿出一半做测试集,一半做验证集(test_size=0.5) Test_Y = np.asarray(Test_Y, dtype=np.int32) # 更新Test_Y for train_index, test_index in ss.split(Test_X, Test_Y): X_valid, X_test = Test_X[train_index], Test_X[test_index] # 把验证集和训练集对应 Y_valid, Y_test = Test_Y[train_index], Test_Y[test_index] return X_valid, Y_valid, X_test, Y_testnormal = True # 是否标准化# 执行标准化if normal: Train_X, Test_X = scalar_stand(Train_X, Test_X)Train_X = np.asarray(Train_X) # 经过方法np.asarray(x)得到最新的xTest_X = np.asarray(Test_X)# 把测试集拿出一半做验证集Valid_X, Valid_Y, Test_X, Test_Y = valid_test_slice(Test_X, Test_Y)二.搭建1DCNN模型2.1 数据处理2.2 定义一个保存最佳模型的方法# 保存最佳模型class CustomModelCheckpoint(keras.callbacks.Callback):# 使用回调函数来观察训练过程中网络内部的状态和统计信息r然后选取最佳的进行保存 def __init__(self, model, path): # (自定义初始化) self.model = model self.path = path self.best_loss = np.inf # np.inf 表示+∞,是没有确切的数值的,类型为浮点型 自定义最佳损失数值 def on_epoch_end(self, epoch, logs=None): # on_epoch_end(self, epoch, logs=None)在每次迭代训练结束时调用。在不同的方法中这个logs有不同的键值 val_loss = logs['val_loss'] # logs是一个字典对象directory; if val_loss < self.best_loss: print("\nValidation loss decreased from {} to {}, saving model".format(self.best_loss, val_loss)) self.model.save_weights(self.path, overwrite=True) # overwrite=True覆盖原有文件 # 此处为保存权重没有保存整个模型 self.best_loss = val_loss2.3 搭建模型# 搭建模型框架(函数式API方法)def mymodel(): inputs = keras.Input(shape=(Train_X.shape[1],Train_X.shape[2]))# ([1500, 784, 1])把【784,1】传入输入层,没看数据处理时,还不知道为啥这样传 h1= layers.Conv1D(filters=8,kernel_size=3,strides=1,padding='same',activation='relu')(inputs) h1 = layers.MaxPool1D(pool_size=2,strides=2,padding='same')(h1) h2 = layers.Conv1D(filters=16,kernel_size=3,strides=1,padding='same')(h1) h2 = layers.MaxPool1D(pool_size=2,strides=2,padding='same')(h2) h3 = layers.Flatten()(h2) # 扁平层,方便全连接层传入数据 h4 = layers.Dropout(0.6)(h3) # Droupt层舍弃百分之60的神经元 h5 = layers.Dense(32,activation='relu')(h4) # 全连接层,输出为32 outputs = layers.Dense(10,activation='softmax')(h5) # 再来个全连接层,分类结果为10种(9种故障类型,1种正常的) # 不要出现中文,,,,,,血泪教训,最开始把1DCNN模型,有模型二字,导致编译出错,一顿爆改! deep_model = keras.Model(inputs,outputs,name = '1DCNN') # 整合每个层,搭建1DCNN模型成功 return deep_model

2.4 编译模型# 编译模型,(优化器:Adam,损失函数:sparse_categorical_crossentropy)model.compile( optimizer=keras.optimizers.Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy'])2.5训练模型并保存history = model.fit(Train_X, Train_Y, batch_size=256, epochs=50, verbose=1, validation_data=(Valid_X, Valid_Y), callbacks=[CustomModelCheckpoint( model, r'mybestcnn.h5')]) # verbose=1带进度条的输出日志信息

 

2.6效果展示(损失,精确对比)

三.评估模型四.混淆矩阵

五.总结

第一次完整的看完一篇代码,权当入门起步!,因为版本和环境的问题,把代码从pycharm转到jupyter,着实费了了我好大力,一行一行代码去百度,最后才完成,遇到很多困难,但解决掉BUG的时候真滴酸爽!!!!!!!!

本文链接地址:https://www.jiuchutong.com/zhishi/296003.html 转载请保留说明!

上一篇:nvm安装(windows)(nvme安装win10教程)

下一篇:〖大前端 - 基础入门三大核心之JS篇⑰〗- JavaScript的流程控制语句「while循环语句」(大前端需要掌握什么技能)

  • 网易云升级到10级需要听多少首歌(网易云升级到8级需要多少时间)

    网易云升级到10级需要听多少首歌(网易云升级到8级需要多少时间)

  • 闲鱼举报人对方知道吗(咸鱼举报对方)

    闲鱼举报人对方知道吗(咸鱼举报对方)

  • 电脑桌面文件变大怎么调小(电脑桌面文件变大怎么缩小)

    电脑桌面文件变大怎么调小(电脑桌面文件变大怎么缩小)

  • 程序设计语言基本要素(程序设计语言基本功能)

    程序设计语言基本要素(程序设计语言基本功能)

  • qq怎么开双封模式(qq怎么弄双封)

    qq怎么开双封模式(qq怎么弄双封)

  • 手机wps怎么做作文格式(手机wps做作文格子)

    手机wps怎么做作文格式(手机wps做作文格子)

  • WPS页眉颜色怎么设置(wps页眉颜色怎么加深)

    WPS页眉颜色怎么设置(wps页眉颜色怎么加深)

  • 哔哩哔哩等级有什么用(哔哩哔哩等级有多少)

    哔哩哔哩等级有什么用(哔哩哔哩等级有多少)

  • 淘宝已处理评价是什么情况(淘宝已处理评价怎么恢复正常)

    淘宝已处理评价是什么情况(淘宝已处理评价怎么恢复正常)

  • 无法保持通话什么意思(为什么无法保持通话)

    无法保持通话什么意思(为什么无法保持通话)

  • iphone xs max和11区别(iphone xs max与iphone11区别)

    iphone xs max和11区别(iphone xs max与iphone11区别)

  • 华为mate30pro闪光灯下面的白点是什么(华为mate30Pro闪光灯怎么能不闪烁呢)

    华为mate30pro闪光灯下面的白点是什么(华为mate30Pro闪光灯怎么能不闪烁呢)

  • 微博可以搜索手机号加人吗(微博可以搜索手机号加好友吗)

    微博可以搜索手机号加人吗(微博可以搜索手机号加好友吗)

  • word2007没保存怎么恢复(word2007没保存怎么办)

    word2007没保存怎么恢复(word2007没保存怎么办)

  • 华为nova5i pro参数(华为nova5i pro参数配置和nova9se)

    华为nova5i pro参数(华为nova5i pro参数配置和nova9se)

  • 计算机输出设备有哪些(计算机输出设备的一组是)

    计算机输出设备有哪些(计算机输出设备的一组是)

  • 美团怎么购买飞机票(美团外卖怎么订机票)

    美团怎么购买飞机票(美团外卖怎么订机票)

  • 小度小度怎么添加通讯录(小度小度怎么添加好友)

    小度小度怎么添加通讯录(小度小度怎么添加好友)

  • 支付宝怎么改实名认证(支付宝怎么改实名认证?苹果)

    支付宝怎么改实名认证(支付宝怎么改实名认证?苹果)

  • 360手表家庭群怎样加人(360手表电话怎么添加群成员)

    360手表家庭群怎样加人(360手表电话怎么添加群成员)

  • Windows 11安装失败怎么办?Win11安装失败解决方法(window11安装失败)

    Windows 11安装失败怎么办?Win11安装失败解决方法(window11安装失败)

  • 【2022-05-31】JS逆向之易企秀(逆算法怎么算)

    【2022-05-31】JS逆向之易企秀(逆算法怎么算)

  • ps怎么沿参考线切图?(ps怎么参考线快捷键)

    ps怎么沿参考线切图?(ps怎么参考线快捷键)

  • 房产税如何
  • 建筑工程发票来自哪里
  • 兼职合同工资发放
  • 企业其他综合收益减少应该怎么处理
  • 财务报表提示未审计
  • 进销存明细账怎么填写
  • 长期借款账务处理会计分录例题
  • 公司水费怎么做账
  • 工程预收款如何处理
  • 用于出口的进项可以抵扣吗
  • 银行收到一笔款可以分开入账吗
  • 企业所得税研发费用100%扣除的有哪些企业
  • 开具发票给顾客公司需要交纳什么税?
  • 拍卖公司如何开展业务
  • 30万的装修工程利润一般是多少
  • 三证合一怎么查询
  • 关于7.1号增值税普通发票新规
  • 机械租赁费如何开
  • 个人所得税生产经营所得投资者减除费用
  • 税务非正常户罚款多少
  • 增长率应该要如何计算呢?
  • 服务业核定征收税率表
  • 华为分享是什么意思关闭有影响吗
  • macos usb启动
  • linux命令-a
  • 货物运输业的增值税税率
  • php远程调用
  • php+redis
  • sgbhp.exe - sgbhp是什么进程 有什么用
  • 专利权的期限是指专利权的实际有效期限
  • 实收资本与注册资本之间的关系
  • 礼的部首是什么部
  • 什么是动态表单
  • nginx配置tp5
  • 旧设备换新设备会计分录
  • 每个月需不需要期末结账
  • 电子发票记账清单入账
  • 残疾人就业保障金怎么申报
  • 下列纳税人不得适用核定征收企业所得税的有
  • 注册机械加工公司需要什么
  • 周转材料包装箱属于存货分类的
  • 普通发票可以抵扣进项吗
  • 织梦专题页模板
  • 企业新成立刻章要求
  • 个体户给对方公司开发票会怎样
  • 融资租赁期间的维修费由谁承担
  • 新准则合同结算的科目编码为
  • 印花税是必交的吗
  • 企业所得税虚报成本多少属于犯罪
  • 广告制作需要交文化事业建设税
  • 金税盘技术维护费可以不交吗
  • 服务业成本的会计核算
  • 预期信用损失影响损益吗
  • 生物性资产折旧处理
  • 建筑装饰行业工业化道路研究参考文献
  • 数据结构 简书
  • 苹果电脑安全性
  • win8系统自带截图
  • win7桌面右下角输入法图标不见了
  • win7记事本可以保存的格式
  • macbookpro怎么删除快捷方式
  • win7右键没有
  • WIN10更新失败
  • 安卓获取设备信息
  • perl教程 pdf
  • opengles版本过低怎么办
  • activity跳转闪退
  • android中常用的布局是
  • ActivityManagerService (三)
  • python的读写文件
  • auto.js获取剪切板内容
  • 湖南省税务局网站2024公务员招聘
  • 纸质发票怎么查电子发票
  • 国家电子税务局云南省电子税务局
  • 重庆市电子税务局官网
  • 在水贝买的黄金
  • 深圳如何举报税务违法
  • 国家税务总局中山市税务局港口税务分局
  • 烟叶税是谁交
  • 被审计了意味着什么
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设