位置: IT常识 - 正文

旋转目标检测【1】如何设计深度学习模型(旋转 目标检测)

编辑:rootadmin
旋转目标检测【1】如何设计深度学习模型 前言

推荐整理分享旋转目标检测【1】如何设计深度学习模型(旋转 目标检测),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:旋转目标检测ssd方法,旋转目标检测ssd方法,yolov5旋转目标检测,旋转目标跟踪,旋转目标检测方法,旋转目标检测ssd方法,旋转 目标检测,旋转目标检测方法,内容如对您有帮助,希望把文章链接给更多的朋友!

平常的目标检测是平行的矩形框,“方方正正”的;但对于一些特殊场景(遥感),需要倾斜的框,才能更好贴近物体,旋转目标检测来啦~

一、如何定义旋转框

常见的水平框参数表达方式为(x,y,w,h),四个参数分别表示水平框中心的横纵坐标、宽度以及高度。常用的YOLOv5也是用这边表示方式的。

旋转框参数表示目前有两种:

五参数表示法 (𝑥,𝑦,ℎ,𝑤,𝜃),它在原来基础上添加多了一个角度𝜃,表示框的旋转情况。八参数表示法量(𝑥1,𝑦1,𝑥2,𝑦2,𝑥3,𝑦3,𝑥4,𝑦4),分别表示框的四个顶点。1.1 五参数表示法 (𝑥,𝑦,ℎ,𝑤,𝜃)

五参数旋转框表示法相比水平框多了旋转角度的信息,边界框参数可由一个5d向量(𝑥,𝑦,ℎ,𝑤,𝜃)确定,其中:

(𝑥,𝑦) 为待检测目标最小外接矩形的中心

ℎ 为该外接矩形的高

𝑤 为该外接矩形的宽

𝜃 为该外接矩形的高与x轴所呈角度

常见的五参数表示法根据角度周期的不同可分为

Opencv定义法长边定义法

在opencv法中,将与x轴成锐角的矩形边视为高,此时𝜃的取值范围为[0,𝜋⁄2),在此种定义法中,当旋转角度跨越𝜋⁄2时,定义的宽和高将进行互换,网络的回归目标也将发生突变,影响网络的收敛。针对这个问题,长边法将矩形框的长边定义为高,矩形框的短边定义为宽,此时𝜃的取值范围为[0,𝜋)。长边法能够有效的避免宽和高的互换问题。(推荐长边法)

注意:五参数表示法对边界框形状进行了限制,任何形状的边界框均表示成矩形。

1.2 八参数表示法量(𝑥1,𝑦1,𝑥2,𝑦2,𝑥3,𝑦3,𝑥4,𝑦4)

八参数表示法中并没有直接表示角度值,而是利用有序四边形中四个角坐标的方式表达旋转框,也叫有序四边形定义法。

旋转边界框可以由一个8d向量(𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, 𝑥4, 𝑦4)唯一确定,其中(𝑥𝑛, 𝑦𝑛)表示边界框四个顶点的坐标

 旋转框基于一个最小的外接矩形,并将左边的点看作起始点,逆时针对外接矩形相交的四个点依次表达:

优点:这种表示方法的灵活性高,边框形状可以表示为任意四边形。

旋转目标检测【1】如何设计深度学习模型(旋转 目标检测)

缺点:但是其需要回归的参数较多,计算复杂度较高,并且四个顶点之间不存在显著的区分关系,可能需要额外的后处理算法确定顶点的顺序。

1.3 存在问题与待改进

各种表示方法待改进地方:

长边表示法中角度在边界值0°和180°会重合,但此时数值上却相差180,由于角度的周期性问题而导致损失值,影响了角度的预测精度。Opencv表示法不仅会在边界值由于角度的周期性问题产生突变,旋转框的宽和高也会在边界处发生交换,由此产生边的交换问题进而导致旋转框角度和形状预测都会受到影响产生突变。有序四边形定义法虽然可以以设定的起始点进行表示,但是同样在临界处起始点容易发生位移现象,从而产生突变影响最终四边形的预测。

解析一下,什么是边的交换性(Opencv表示法存在的问题)

下图在预测目标框时,发生了宽高互换现象,Opencv定义法规定的角度值是指目标框与x轴所成的锐角。范围为[-90°, 0°),由于理想的回归方式超出了角度设定范围,需要顺时针旋转至过渡框,再进行边的交换得到最终预测框,这样的回归方式导致损失值较大。

  解析一下,什么是角度周期性问题(长边表示法和Opencv表示法存在的问题)

下图中蓝框是标签位置,角度为0°,当蓝框逆时针旋转2°时到达红框位置,此时检测框的角度为2°;当蓝框顺时针旋转2°时到达绿框的位置,此时检测框的角度为178°,这两种旋转方式的实际角度误差值很小,损失值却产生了一个周期的突变,增加了稳定收敛的难度.

提出了问题,有解决方案吗?有的,后面文章结合具体的模型设计再介绍。

二、如何设计深度学习模型2.1 模型损失函数

如果采用五参数表示法 (𝑥,𝑦,ℎ,𝑤,𝜃),那么我们重点考虑𝜃角度,如何衡量计算损失函数,有两种思路:

𝜃角度,采用分类思路,把角度划分为180个类别,每间隔一个度,划分为一个类别;所用的损失函数,可以用交叉熵损失。𝜃角度,采用回归思路,把角度值先转为弧度值,然后对弧度值进行映射(sin、cos等函数),制作为标签;然后损失函数,可以用L1(绝对值损失)或L2(均方差损失)。

这样会存在问题吗,当前有一些问啦,后面再解释原理和方案,还结合具体的案例。

如果采用八参数表示法量(𝑥1,𝑦1,𝑥2,𝑦2,𝑥3,𝑦3,𝑥4,𝑦4),那么我们可以直接四个边框顶点坐标进行回归,然后损失函数,可以用L1(绝对值损失)或L2(均方差损失)。

这样会存在问题吗,也是会的,后面再解释原理和方案。

2.2 模型结构

目标检测通常分为单阶段(YOLO、FCOS)和两阶段(R-CNN、Faster R-CNN)。

这里以单阶段YOLO为示例,看看是如何设计模型结构的,来自百度的PP-YOLOE-R

论文名称:PP-YOLOE-R: An Efficient Anchor-Free Rotated Object Detector

论文地址:https://arxiv.org/abs/2211.02386

 它是采用五参数表示法 (𝑥,𝑦,ℎ,𝑤,𝜃),在检测头的分支中,添加多一个分支进行角度𝜃预测。

后面再详细解释,这篇文章先作入门啦~

后面介绍在YOLOv5、FOCS、R-CNN等基础上实现旋律目标检测。

本文链接地址:https://www.jiuchutong.com/zhishi/296098.html 转载请保留说明!

上一篇:Yolov5算法解读(yolov1算法)

下一篇:java怎么写接口,java开发api接口教程(如何用java写接口)

  • 公司内部个人股份怎么算
  • 研发支出属于什么科目借贷方向
  • 工程项目结算流程图
  • 预付和预收可以合并吗
  • 对公账户卡号是私人账号
  • 小规模纳税人农产品进项税抵扣
  • 子公司注销资金还母公司冲实收资本吗
  • 托收承付怎么理解
  • 固定资产待抵扣进项税率
  • 材料采购做账的流程
  • 已认证未入账的分录
  • 企业受托研发产品有哪些
  • 发票抬头写错了还能报销吗
  • 营改增后购房发票怎么开
  • 公司名下的车怎么报废
  • 未分配利润转增股本 个人所得税
  • 季节工有工伤吗
  • 餐饮业一般纳税人企业所得税税率
  • 水土保持补偿费收费标准
  • 货物收到钱已付 发票未收到怎么做账
  • 预缴纳税申报失败怎么办
  • 电子银行承兑汇票如何贴现
  • 生产人员社保怎么做账
  • 预计产品质量保证损失是什么意思
  • 生产型出口企业的概念
  • 什么是汇兑损益,汇兑损益产生的原因有哪些?(10分)
  • 比较常见的病有哪些
  • 民间非营利组织会计账务处理
  • 一般纳税人取得普票会计分录
  • 君子兰的养殖方法
  • php中实现文件上传的函数是什么
  • 纳税人解除劳动合同证明
  • php框架开发教程
  • 凯斯西储大学在哪个城市
  • 表关联查询语句
  • PHP magento后台无法登录问题解决方法
  • php如何自学
  • php gdb
  • 医疗保险合同印花税怎么交
  • 微信转账和支付宝转账的区别
  • 结转损益利息收入在哪方
  • python判断字符串为字母
  • 帝国cms如何使用
  • 工厂的污水处理站作用
  • mongodb $sum
  • 委托收款的含义
  • 公司代个人缴纳社保,但不发工资和交税
  • 损益类账户期末有余额吗
  • mysql误删数据
  • 固定资产清理费用对应科目
  • 专票认证之后怎么做账
  • 电子商业承兑汇票的承兑有以下几种方式
  • 长期预付账款涉税
  • 医疗保险个人缴纳比例
  • 公司员工垫付款项
  • 税收返还会计核算
  • 收到汽车抵账账务处理
  • 应交税金减免税科目
  • 退回以前年度所得税账务处理
  • 3%税率专票为什么不能抵扣
  • 残保金计算公式2023年
  • 2020年工伤赔偿标准表
  • windows下mysql 5.7版本中修改编码为utf-8的方法步骤
  • sqlserver2000企业管理器自动关闭
  • win10系统如何快速打开控制面板
  • centos和rhel
  • mtask.exe - mtask是什么进程 有什么用
  • Win7升级win10后可以删除2345吗
  • android openconnect
  • js的isnan
  • 编写python
  • pycharm编程入门
  • Android 为LinearLayout增加分割线 divider
  • javascript的promise
  • three.js入门教程(合集)
  • js怎么设置图片大小
  • 不动产租赁和经营租赁税率是多少
  • 图像信息采集照片
  • 20 百望九赋税控盘管理员默认指令多少?
  • 盈利性组织与非盈利性组织公共关系不同之处
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设