位置: IT常识 - 正文

imu内参标定(内外参标定)

编辑:rootadmin
imu内参标定 imu内参标定前言1.imu噪声模型介绍2./imu/data和/imu/data_raw的区别3. px4飞控imu标定,以及遇到的问题kalibr_allan标定imu内参4.使用mintar修改的imu_utils进行zed2相机imu的标定讨论

推荐整理分享imu内参标定(内外参标定),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:内参标定算法,IMU内参标定算法,内参标定算法,imu_utils标定,内参标定算法,IMU内参标定算法,imu外参标定,内参标定算法,内容如对您有帮助,希望把文章链接给更多的朋友!

提示:本文部分大部分内容都是通过多次实验测试总结得出,有些地方比较玄学,也不是很严谨,希望懂得的小伙伴能在评论区指出。

前言

先把结论放在这里,关于imu噪声参数的标定对于vio(比如vins、orb3)其实并没有多重要,虽然说他们的配置文件中都要求给一个imu的噪声参数,理由会在正文中说明。如果做imu的标定只是为了给vio的配置文件中imu的噪声参数一个数值的话,不必花太多时间追求一个精确的imu噪声参数,耗时且意义不大。

1.imu噪声模型介绍

详细的imu的噪声模型的介绍可以参考kalibr文档的介绍,但是感觉解释的不是很清晰,推荐看下An introduction to inertial navigation加深下理解,我自己也做了一个关于imu噪声模型的总结。 这里仅展示几个要注意的地方:

imu的噪声分为两种,“White Noise”和“Bias”,都有连续时间模型和连续时间模型两种形式,两种模式可以相互转换,这里强调一下有的标定工具输出的是连续型(imu_utils),有的是离散型(kalibr_allan)。另外有的VIO算法需要的是连续性的imu噪声参数,有的是连续型的噪声参数,具体根据代码或单位辨识。为了方便后续的imu-cam外餐标定,有必要说一下Kalibr需要的imu噪声参数的格式。Kalibr需要的噪声参数都是连续时间模型的,单位如下图: 2./imu/data和/imu/data_raw的区别

px4的imu有两个消息,一个是/mavros/imu/data,一个是/mavros/imu/data_raw。在mavros wiki中解释说data是求解了姿态的,而data_raw是原始数据。一般来说大部分的imu传感器都是有data和data_raw两个消息的,但是vio中比较倾向与用谁并不知道,或者说用谁都差不多,这个问题有没有评论区能解答的。 我自己录制了zed2相机的imu和px4的imu在静止状态下的数据,记录在下图:

上图中上部分是px4的imu的陀螺仪测的角速度消息,可以看出其实data相比data_raw噪声要更小,所以px4的/imu/data是进过一个滤波处理的。下方是zed2的imu消息,data和data_raw基本差不多,但是仔细看还是有一些差别的,可以认为data是有一个基本的去噪处理的吧。3. px4飞控imu标定,以及遇到的问题

补充:px4的内置有两个imu,选择imu数据的时候也是采用投票机制,具体可以参考下面的链接。关于能否用带有冗余imu机制的传感器作为vio中imu的数据来源,作者本来持怀疑态度,但是从论文中来看,px4很少出现,vins-mono用的大疆的N3飞控(没有imu冗余设计),但是《Robust Real-time LiDAR-inertial Initialization》这篇文章用的是px4-mini(有冗余的imu设计,和px4一样)作为lio的imu数据源。 px4传感器冗余机制的介绍

一些有一些博客使用仿真的imu数据对kalibr_allan和imu_utils标定的结果进行了比较(链接),结果是kalibr_allan的高斯白噪声和随机游走都比较准,而imu_util(gaowenliang的版本)的随机游走误差的标定比较差,所以推荐使用kalibr_allan。但是这位博主用的是仿真的数据,和实际情况或许有一些偏差,我自己使用kalibr_allan的过程中并没有取得较为理想的效果,并不推荐kalibr_allan(虽然是uzh大神们写的),更推荐mintar修改后的imu_utils。

kalibr_allan标定imu内参

kalib_allan里面有个把bag文件转换为mat文件的ros节点,需要在ubuntu下安装matlab,安装完后还需要让cmake能找到matlab,可以参考这个https://blog.csdn.net/wuzuyu365/article/details/52330830

imu内参标定(内外参标定)

下文我就使用/mavros/imu/data进行imu内参的标定。

第一步是录制imu静止状态的数据。bag转mat roseun bagconvert bagconvert "bag文件位置" “imu的topic” 会在bag文件的目录位置生成一个对应的mat文件,如果topic没对,会生成一个大概177bytes的错误文件。运行matlab脚本生成allan方差的分析图片,需要修改m文件里的mat文件的目录位置和imu频率,图片会生成在data文件夹下。 问题: 我之前录了2h的数据,结果会出现部分参数为Nan的情况(如上图,主要就是陀螺仪的随机游走),但是我录制了4个小时发现还是NAN,接着尝试了10h,也是类似的情况,在录制12小时的数据才勉强得出数据,但是Allan图的形状并不是很标准的感觉,和12小时数据得到的Allan图和上图图其实长的比较像,并没有明显的0.5斜率的直线可以拟合得到陀螺仪的随机游走噪声。4.使用mintar修改的imu_utils进行zed2相机imu的标定

说明: gaowenliang的imu_utils貌似有单位的问题,然而大神已经很久没出现了,在github的issue有关于单位问题的讨论,然后有个叫mintar的大佬把单位问题修改了,把输出的值都改成了连续时间的单位,也开源了,并且使用realsense相机同allan_variance_ros的标定结果做了对比(这个开源算法也是Kalibr推荐的,对比结果在imu_utils的issue里),并且结果很相近,所以算法应该是比较合理正确的。

下文使用mintar版本的imu_utils对zed2相机里的imu做了一个标定。 两个版本的使用方法都一样,不再介绍,本文录制了4小时的静止imu的数据(其实算法里只用了两个小时的数据),然后标定的结果在下面(data和data_raw我都标定了,不知道vio应该用哪个):

zed2_imu_dataacc_nacc_wgyro_ngyro_w/imu/data0.0009723914986221080.00001618161369788250.0001120594344447880.0000000377973509488189/imu/data_raw0.0009724721493928010.00001619757247543750.0001039034780287490.00000000748263828361598

这个图是用imu_utils的matlab代码画的/imu/data的数据,红线是gyro的数据,蓝线是acc的数据,实线应该是拟合的数据(从这个角度看,其实kalibr_allan应该是没有拟合曲线来读取参数,所以读不出来,没研究过源码,这些都是猜的)?圈和×是真实数据画出来的。

讨论

标定时录制的数据集都是在imu静止的状态下录制的,但是我们在做imu-cam标定或者是vio的时候,imu都是处于动态运动的状态,所以直接使用我们标定的参数是会出问题的,大概率会导致系统的奔溃,这个问题在这个github issue中有讨论,mintar给了几点假设:

The allan variance estimation methods (mintar/imu_utils and ori-drs/allan_variance_ros) estimate a model based on Q, N, B, K, R or at least N (“rate/acceleration white noise”), B (“bias instability”), K (“rate/acceleration random walk”). But all VIO packages and Kalibr just use N and K.The calibration is done under close to ideal circumstances in a static setup. In a dynamic setting, with other factors like temperature changes etc., the noise will be higher.The calibration packages take the average of the axes, but some IMUs have different gyros/accelerometers for different axes, so one should probably use the maximum and not the average to be on the safe side.In my setup, there’s no hardware synchronization between IMU and camera. Maybe using a higher standard deviation for the IMU prevents VINS from trusting the IMU too much and deviating when the real error is from a wrong time synchronization.

另外,在Kalibr的imu noise model的介绍的最后也做了一个说明:

It is important to note that the IMU measurement error model used here is derived from a sensor which does not undergo motion, and at constant temperature. Hence scale factor errors and bias variation caused by temperature changes, for example, are not accounted for. So clearly, the model is optimistic. Particularly when using low-cost MEMS IMUs with Kalibr, you may have to increase the noise model parameters to “capture” these errors as well. In other words, if you use directly the “sigmas” obtained from static sensor data, Kalibr will tend to trust your IMU measurements too much, and its solution will not be optimal. From our experience, for lowest-cost sensors, increasing the noise model parameters by a factor of 10 or more may be necessary. If you use Kalibr with such a device, please give us feedback, such that we can develop specific guidelines, device-specific parameter suggestions, or more advanced methods to determine these parameters.

那么从这个讨论的内容来看,我们标定imu的结果其实不能直接用在vio算法中,最多只能做一个参考吧,在这个基础上做一些放大。也就是说其实我们不做imu的标定也无所谓,对于vio而言,当vio效果不理想的时候可以直接放大一下imu的噪声参数进行比较。包括在imu-cam的标定过程中,imu的噪声参数也不能直接用imu静态状态下标定的结果。 在github issue中有人这样解释,我觉得也很合理:

One additional factor—related to what was mentioned about calibrating in static vs running in dynamic conditions—might be that the IMU model used in all these VO / SLAM algorithms is practical, but still simplistic. I.e. it simply doesn’t model many of the effects on the physical device. I’m thinking of temperature-dependent bias, cross-axis sensitivity, etc. All this means that the errors in your model aren’t actually independent and bias-free and one way to deal with it is by increasing the measurement uncertainty to “mask” out the un-modelled behaviour. But yes, it’s a valid question what’s the point of calibrating the IMU when you just hand-tune the values anyway. I think hand-tuning will always be needed. Calibration can still inform you about the relative quality of different IMUs and thus help when tuning the parameters (e.g. tell you if your values for a new IMU should be higher or lower than for some reference IMU that you know works well).

下一篇文章:使用Kalibr进行imu-cam的联合标定。

本文链接地址:https://www.jiuchutong.com/zhishi/296209.html 转载请保留说明!

上一篇:GPT3.5 , InstructGPT和ChatGPT的关系

下一篇:Vuex 之一:3种拿到 state 中数据的方式与实例剖析(vuex详解和用法)

  • 怎样做好微博推广增加10万+粉丝(怎样做好微博推广工作)

    怎样做好微博推广增加10万+粉丝(怎样做好微博推广工作)

  • 微信男女标志怎么改(微信男女标志怎么显示出来)

    微信男女标志怎么改(微信男女标志怎么显示出来)

  • Word橙色底纹怎么设置(word橙色怎么调)

    Word橙色底纹怎么设置(word橙色怎么调)

  • VIVOY66怎么连接热点共享网络(vivoy66怎么连接电脑)

    VIVOY66怎么连接热点共享网络(vivoy66怎么连接电脑)

  • 苹果手机换了电板是不是和新的一样(苹果手机换了电池会不会影响到什么)

    苹果手机换了电板是不是和新的一样(苹果手机换了电池会不会影响到什么)

  • vivo录屏怎么设置清晰度(vivo录屏怎么设置成铃声)

    vivo录屏怎么设置清晰度(vivo录屏怎么设置成铃声)

  • 抖音大号小号不同点在哪里(抖音大号小号不能都直播吗)

    抖音大号小号不同点在哪里(抖音大号小号不能都直播吗)

  • 电动车充电器怕淋雨吗(电动车充电器怕冻吗)

    电动车充电器怕淋雨吗(电动车充电器怕冻吗)

  • 小米手机录像不要声音(小米手机录像不录声音怎么设置)

    小米手机录像不要声音(小米手机录像不录声音怎么设置)

  • 2600和3600性能差多少(2600对比3600x)

    2600和3600性能差多少(2600对比3600x)

  • 京东和京东极速版有什么区别(京东和京东极速版是一个账号吗)

    京东和京东极速版有什么区别(京东和京东极速版是一个账号吗)

  • 小米10有防抖吗(小米10支不支持防抖)

    小米10有防抖吗(小米10支不支持防抖)

  • a1549是苹果几(苹果手机a1549是苹果几)

    a1549是苹果几(苹果手机a1549是苹果几)

  • 钉钉属于腾讯吗(钉钉是不是腾讯旗下的)

    钉钉属于腾讯吗(钉钉是不是腾讯旗下的)

  • 交换机属于什么设备(交换机属于什么节点)

    交换机属于什么设备(交换机属于什么节点)

  • 华为手机nfc感应区在哪个位置(华为手机nfc感应部位在哪里)

    华为手机nfc感应区在哪个位置(华为手机nfc感应部位在哪里)

  • 华为mate30几个摄像头(华为mate30几个摄像头怎么用)

    华为mate30几个摄像头(华为mate30几个摄像头怎么用)

  • 手机上nnbs是啥意思(手机ny是什么)

    手机上nnbs是啥意思(手机ny是什么)

  • iphone11双卡怎么装(iphone11双卡怎么设置不同的铃声)

    iphone11双卡怎么装(iphone11双卡怎么设置不同的铃声)

  • ipad新手使用指南(ipad新手使用指南2018)

    ipad新手使用指南(ipad新手使用指南2018)

  • 小米应用商店无法联网(小米应用商店无法升级软件)

    小米应用商店无法联网(小米应用商店无法升级软件)

  • yolov7模型训练结果分析以及如何评估yolov7模型训练的效果(yolov5模型训练)

    yolov7模型训练结果分析以及如何评估yolov7模型训练的效果(yolov5模型训练)

  • vue-router传参的四种方式超详细(vue router怎么传值)

    vue-router传参的四种方式超详细(vue router怎么传值)

  • pytorch如何搭建一个最简单的模型,(pytorch如何搭建神经网络)

    pytorch如何搭建一个最简单的模型,(pytorch如何搭建神经网络)

  • 企业所得税汇算清缴时间
  • 个人所得税申报截止时间
  • 免征增值税的项目如何开发票
  • 房地产按揭是什么意思
  • 两个日期连在一起怎么写
  • 分公司税务登记流程视频
  • 以前年度计提的工资没发放怎么处理
  • 工资中事假扣款执行依据
  • 利用个独企业避税犯法吗
  • 公司注销应付款太多
  • 自产农产品加工后仍属于附注的农产品,免税吗?
  • 土地承包经营合同无效情形
  • 收到银行退回的银行汇票多余款
  • 企业收到政府补助要交税吗
  • 核定征收是每个月都要交税吗
  • 公司账户转个人账户用途怎么写
  • 空调可以开专票抵扣吗
  • 2016年的发票2019年还能开红字吗
  • 电子银行承兑汇票如何贴现
  • 初级备考心得总结
  • 资产总额小于所有者权益合计
  • 如何调整任务栏图标大小
  • 给客户买的礼品怎么报销
  • mac本host文件
  • kb4586853更新
  • macbook怎么安装macos
  • linux mount命令详解
  • 土地受让方交的税是什么
  • 深度学习和日常代码中遇到的报错汇总及解决方案,持续更新中。。。。
  • hotkey可以卸载吗
  • 计提公积金账务处理需要什么凭证
  • 财务如何核对会计信息
  • 上市公司转让股票所得要交个税吗?
  • 新会计准则5步法
  • php获取手机型号
  • vue叠化在哪里
  • php web socket
  • Vue3通透教程【三】Vue3代码初体验找不同
  • 2023跨年烟花链接
  • 软件的摊销期限
  • 社会团体收取的会费是否缴纳企业所得税
  • 软件增值税即征即退文件
  • 厂房转租会计分录
  • 动态sql怎么执行
  • 分包工程款的账务处理
  • 所得税 补税
  • 利润表中的资产处置收益应该计入营业利润还是利润总额
  • 商业汇票贴现条件有哪些
  • 资产负债表应交税费是负数正常吗
  • 收到加油
  • 小规模公司销项发票税额记到哪里了
  • 股东分红会计分录
  • 建筑安装业经营范围
  • 佣金是买卖股票都收吗
  • 借别人钱收据怎么写
  • 贷款减值准备如何计算
  • 预付账款怎么做坏账
  • 客户以个人名义打对公户现在要求开专票可以吗
  • 社保费申报是当月的
  • 期末没有结账成本怎么办
  • 法人代表可以兼任出纳吗
  • 政府奖励我公司的钱
  • mysql 备份和恢复
  • 当恢复系数e=1时碰撞属于什么碰撞
  • jmeter怎么连接数据库
  • mysql忽略大小写设置
  • 按住鼠标右键拖动文件
  • shell sed 空格
  • css分页样式
  • jQuery实现textarea自动增长宽高的方法
  • vue中怎么引入css
  • javascript要怎么学
  • 跟踪子弹
  • java learning
  • 在windows中快捷键的作用
  • android 数据
  • javascript 面向对象
  • 深圳纳税信息查询
  • 买新房子需要交契税吗
  • 深圳房东有钱吗
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设