位置: IT常识 - 正文

【CV大模型SAM(Segment-Anything)】真是太强大了,分割一切的SAM大模型使用方法:可通过不同的提示得到想要的分割目标(cvg模型)

编辑:rootadmin
【CV大模型SAM(Segment-Anything)】真是太强大了,分割一切的SAM大模型使用方法:可通过不同的提示得到想要的分割目标 目录前言安装运行环境SAM模型的使用方法导入相关库并定义显示函数导入待分割图片使用不同提示方法进行目标分割方法一:使用单个提示点进行目标分割方法二:使用多个提示点进行目标分割方法三:用方框指定一个目标进行分割方式四:将点与方框结合,进行目标分割方法五:多个方框同时输入,进行多目标分割总结

推荐整理分享【CV大模型SAM(Segment-Anything)】真是太强大了,分割一切的SAM大模型使用方法:可通过不同的提示得到想要的分割目标(cvg模型),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:cv模板是什么,cv模型公式推导过程,cv模型部署,cv33模型,cv模型公式推导过程,cv33模型,cvmodel,cv模型公式推导过程,内容如对您有帮助,希望把文章链接给更多的朋友!

本文主要介绍SAM模型的使用方法:如何使用不同的提示进行目标分割。而且该模型在CPU的环境下就可以快速运行,真心不错~,赶紧来试试吧

关于Segment-Anything模型的相关代码、论文PDF、预训练模型、使用方法等,我都已打包好,供需要的小伙伴交流研究,获取方式如下:

关注文末名片GZH:阿旭算法与机器学习,回复:【SAM】即可获取SAM相关代码、论文、预训练模型、使用方法文档等

前言

最近GPT一直都被炒的火热,没想到这么快就见到了CV的大模型,而且拥有新数据集+新范式+超强零样本泛化能力。 虽然此次出现的CV大模型没有NLP中的GPT那么强大的效果:用一个模型就可以处理N多下游任务。但这也是一个很好的开始,也应该是CV未来的发展趋势。 SAM(Segment-Anything Model)的出现统一了分割这个任务(CV任务的一个子集)的下流应用,说明了CV的大模型是可能存在的。其肯定会对CV的研究带来巨大的变革,很多任务会被统一处理,可能再过不久,检测、分割和追踪也会被all in one了。

项目地址:https://github.com/facebookresearch/segment-anything Demo:https://segment-anything.com/

安装运行环境

运行需要python>=3.8, 以及pytorch>=1.7和torchvision>=0.8。 安装依赖库:

pip install git+https://github.com/facebookresearch/segment-anything.gitSAM模型的使用方法导入相关库并定义显示函数

下面导入了运行所需的第三方库,以及定义了用于展示点、方框以及分割目标的函数。

import numpy as npimport torchimport matplotlib.pyplot as pltimport cv2def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30/255, 144/255, 255/255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image)def show_points(coords, labels, ax, marker_size=375): pos_points = coords[labels==1] neg_points = coords[labels==0] ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) def show_box(box, ax): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) 导入待分割图片image = cv2.imread('images/truck.jpg')image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)plt.figure(figsize=(10,10))plt.imshow(image)plt.axis('on')plt.show()

使用不同提示方法进行目标分割

首先,加载SAM预训练模型。【文末已将所有文件打包,感兴趣的小伙伴可自行获取】

import syssys.path.append("..")from segment_anything import sam_model_registry, SamPredictorsam_checkpoint = "./models/sam_vit_b_01ec64.pth"model_type = "vit_b"device = "cpu" # or "cuda"sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)sam.to(device=device)predictor = SamPredictor(sam)

通过调用SamPredictor.set_image函数,将输入的图像进行编码,SamPredictor 会使用这些编码进行后续的目标分割任务。

predictor.set_image(image)

在上图车的图片上,选择一个点。点的输入格式为(x, y)和并表示出点所带有的标签1(前景点)或0(背景点)。可以输入多个点,在这里我们先只用一个点,选择的点会显示为一个五角星的标记。

方法一:使用单个提示点进行目标分割input_point = np.array([[500, 375]]) # 标记点input_label = np.array([1]) # 点所对应的标签plt.figure(figsize=(10,10))plt.imshow(image)show_points(input_point, input_label, plt.gca())plt.axis('on')plt.show()

用 SamPredictor.predict进行分割,模型会返回这些分割目标对应的置信度。

masks, scores, logits = predictor.predict( point_coords=input_point, point_labels=input_label, multimask_output=True,)【CV大模型SAM(Segment-Anything)】真是太强大了,分割一切的SAM大模型使用方法:可通过不同的提示得到想要的分割目标(cvg模型)

参数说明:

point_coords: 提示的坐标点位置 point_labels: 提示点对应的类型,1前景,0背景 boxes: 提示的方框 multimask_output: 多目标输出还是但目标输出True or False

multimask_output=True (默认),SAM模型会输出3个分割目标和对应的置信度scores。这个设置主要是用于面对歧义的提示点,因为一个提示点可能在多个分割的目标内部,multimask_output=True 能够将包含该提示点的所有目标都分割出来。 如下面示例所示:2种车窗户、还有整个车均包含了五角星的提示点。

masks.shape # (number_of_masks) x H x W(3, 1200, 1800)for i, (mask, score) in enumerate(zip(masks, scores)): plt.figure(figsize=(10,10)) plt.imshow(image) show_mask(mask, plt.gca()) show_points(input_point, input_label, plt.gca()) plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18) plt.axis('off') plt.show()

方法二:使用多个提示点进行目标分割

单个提示点通常会存在歧义的影响,因为可能多个目标均包含该点。为了得到我们想要的单个目标,我们可以在目标上进行多个点的提示,以获取该目标的分割结果。 例如下面在卡车上用2个提示点,从而直接提取出整个车的分割结果,而不是窗户。这是需要设置multimask_output=False,用于提取单个目标分割结果。

input_point = np.array([[500, 375], [1125, 625]])input_label = np.array([1, 1])mask_input = logits[np.argmax(scores), :, :] # Choose the model's best maskmasks, _, _ = predictor.predict( point_coords=input_point, point_labels=input_label, mask_input=mask_input[None, :, :], multimask_output=False,)masks.shape(1, 1200, 1800)plt.figure(figsize=(10,10))plt.imshow(image)show_mask(masks, plt.gca())show_points(input_point, input_label, plt.gca())plt.axis('off')plt.show()

如果我们仅想得到窗户的分割结果,我们可以使用背景点(label=0,下图红的五角星)将车子的其他部分剔除掉。 ​

input_point = np.array([[500, 375], [1125, 625]])input_label = np.array([1, 0])mask_input = logits[np.argmax(scores), :, :] # Choose the model's best maskmasks, _, _ = predictor.predict( point_coords=input_point, point_labels=input_label, mask_input=mask_input[None, :, :], multimask_output=False,)plt.figure(figsize=(10, 10))plt.imshow(image)show_mask(masks, plt.gca())show_points(input_point, input_label, plt.gca())plt.axis('off')plt.show()

方法三:用方框指定一个目标进行分割

SAM模型可以用一个方框作为输入,格式为[x1,y1,x2,y2]。来进行单个目标的分割,如下面所示,通过方框对车的轮子进行分割。

input_box = np.array([425, 600, 700, 875])masks, _, _ = predictor.predict( point_coords=None, point_labels=None, box=input_box[None, :], multimask_output=False,)plt.figure(figsize=(10, 10))plt.imshow(image)show_mask(masks[0], plt.gca())show_box(input_box, plt.gca())plt.axis('off')plt.show()

方式四:将点与方框结合,进行目标分割

如下示例:将轮胎的中心轮毂部分剔除,仅得到轮胎外部。 方框用于得到轮胎;点标记为背景(input_label = np.array([0])),起到剔除作用。

input_box = np.array([425, 600, 700, 875])input_point = np.array([[575, 750]])input_label = np.array([0])masks, _, _ = predictor.predict( point_coords=input_point, point_labels=input_label, box=input_box, multimask_output=False,)plt.figure(figsize=(10, 10))plt.imshow(image)show_mask(masks[0], plt.gca())show_box(input_box, plt.gca())show_points(input_point, input_label, plt.gca())plt.axis('off')plt.show()

方法五:多个方框同时输入,进行多目标分割

通过同时输入多个方框,可用于分割不同方框中的目标。下面是对车的不同目标的分割效果。

input_boxes = torch.tensor([ [75, 275, 1725, 850], [425, 600, 700, 875], [1375, 550, 1650, 800], [1240, 675, 1400, 750],], device=predictor.device)transformed_boxes = predictor.transform.apply_boxes_torch(input_boxes, image.shape[:2])masks, _, _ = predictor.predict_torch( point_coords=None, point_labels=None, boxes=transformed_boxes, multimask_output=False,)masks.shape # (batch_size) x (num_predicted_masks_per_input) x H x Wtorch.Size([4, 1, 1200, 1800])plt.figure(figsize=(10, 10))plt.imshow(image)for mask in masks: show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)for box in input_boxes: show_box(box.cpu().numpy(), plt.gca())plt.axis('off')plt.show()

总结

以上便是SAM模型的使用方法,可以通过不同的提示方式得到不同的分割结果。总体来说,效果还是很不错的,关键是居然还可以在CPU环境下快速运行。感兴趣的小伙伴,也可以自己试试哦~

如果文章对你有帮助,感谢点赞+关注!

关注下方名片GZH:阿旭算法与机器学习,回复:【SAM】即可获取SAM相关代码、论文、预训练模型、使用方法文档等,欢迎共同学习交流

本文链接地址:https://www.jiuchutong.com/zhishi/297270.html 转载请保留说明!

上一篇:JavaScript实现留言板(javascript保留字有哪些)

下一篇:微信小程序中如何实现微信支付(微信小程序中如何打开不加检验文件的网页)

  • 所得税调增调减项目有哪些
  • 新公司需要去当地街道报备劳动关系证明吗
  • 企业所得税和预提所得税
  • 夏天单位发防暑物品的通知
  • 本年已交税费怎么算
  • 什么是非限制
  • 小规模什么情况下只交城建税
  • 进项税额转出冲红
  • 代收款是什么套路
  • 以前年度损益调整属于哪类科目
  • 企业走账的会计处理
  • 提前竣工的规定是什么
  • 信用卡产生滞纳金
  • 软件开发公司怎么找客户
  • 三代税款手续费申请流程
  • 水电费差价收入计算增值税公式是怎样的?
  • 高新技术企业资助
  • 利润表季报表
  • 应付和预付账款的区别
  • 新注册公司税务报到
  • uv价值是怎么计算公式
  • 决算帐表不相符怎么处理
  • 资本化利息支出是什么意思
  • 出口退税限额如何理解
  • 预收购货款的会计分录
  • 过桥资金法律规定
  • 生物制品税率3%税率什么时候开始的
  • 上月多计提的税金及附加怎么办
  • 冲往年管理费用的账务处理是否涉及所得税
  • 销项负数发票怎么处理
  • PHP:pg_client_encoding()的用法_PostgreSQL函数
  • php tokenizer
  • php获取扩展名的几种方法
  • 瓦尔德内尔精彩
  • 纳税申报方式有直接申报邮寄申报数据电文
  • 预提费用会计处理
  • 销售使用过的固定资产3%减按2%
  • 个人股权转让应税凭证名称
  • 在收付实现制下,预付的下季度报刊杂志订阅费
  • web攻防之业务安全实战指南在线阅读
  • 扩散模型和gan的区别
  • css面试题及答案
  • 募股方案
  • java的基本
  • 弥补以前年度亏损最多几年
  • 房地产预缴增值税计税依据
  • 应付票据是供应商往来吗
  • python {:s}
  • dede插件
  • 钢管租赁如何跑业务
  • 购买图书的会计账务处理
  • 盈余公积转增实收资本会计科目
  • 出租房屋会计账务处理
  • 补交增值税和滞纳金怎么入账
  • 发票冲红重新开具怎么做账务处理
  • 企业退休职工取暖费
  • 代理记账需要什么章
  • 发票勾选认证的时间限制是多久
  • 固定资产的核算包括
  • 应付工资的计算公式用友
  • sqlserver跨库查询sql回路问题
  • mysql 行转列 列转行
  • win10 Realtek HD Audio更新失败怎么办 win10关闭UAC解决Realtek HD Audio更新失败
  • winload是什么
  • linux find命令查找文件名
  • xp查看用户名和密码
  • mac怎么利用蓝牙传输文件
  • Linux一键安装ftp
  • win7电脑711
  • nvsvc.exe - nvsvc是什么进程 有什么用
  • win10ipv4 ipv6无internet访问权限
  • quick cocos2dx-Lua中的自定义事件的使用
  • 不是批处理文件
  • 用javascript
  • 工作笔记都写什么内容
  • js正则 \w
  • 个人所得税完税证明怎么开具
  • 中国烟草一年税收占全国总收入
  • 长沙税务注销公示期是多久
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设