位置: IT常识 - 正文

SwinIR实战:详细记录SwinIR的训练过程

编辑:rootadmin
SwinIR实战:详细记录SwinIR的训练过程 文章目录SwinIR实战:详细记录SwinIR的训练过程。下载训练代码数据集训练完整的代码:SwinIR实战:详细记录SwinIR的训练过程。

推荐整理分享SwinIR实战:详细记录SwinIR的训练过程,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

论文地址:https://arxiv.org/pdf/2108.10257.pdf

预训练模型下载:https://github.com/JingyunLiang/SwinIR/releases

训练代码下载:https://github.com/cszn/KAIR

测试代码:https://github.com/JingyunLiang/SwinIR

论文翻译:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/124434886

测试:https://wanghao.blog.csdn.net/article/details/124517210

在写这边文章之前,我已经翻译了论文,讲解了如何使用SWinIR进行测试?

接下来,我们讲讲如何SwinIR完成训练,有于作者训练了很多任务,我只复现其中的一种任务。

下载训练代码

地址:https://github.com/cszn/KAIR

这是个超分的库,里面包含多个超分的模型,比如SCUNet、VRT、SwinIR、BSRGGAN、USRNet等模型。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-B5Md9i7H-1651410061139)(https://gitee.com/wanghao1090220084/cloud-image/raw/master/img/face_09_comparison.png)]

下载后解压,训练SwinIR的REANDME.md,路径:./docs/README_SwinIR.md

数据集

训练和测试集可以下载如下。 请将它们分别放在 trainsets 和 testsets 中。

任务训练集测试集classical/lightweight image SRDIV2K (800 training images) or DIV2K +Flickr2K (2650 images)set5 + Set14 + BSD100 + Urban100 + Manga109 download allreal-world image SRSwinIR-M (middle size): DIV2K (800 training images) +Flickr2K (2650 images) + OST (10324 images,sky,water,grass,mountain,building,plant,animal) SwinIR-L (large size): DIV2K + Flickr2K + OST + WED(4744 images) + FFHQ (first 2000 images, face) + Manga109 (manga) + SCUT-CTW1500 (first 100 training images, texts) RealSRSet+5imagescolor/grayscale image denoisingDIV2K (800 training images) + Flickr2K (2650 images) + BSD500 (400 training&testing images) + WED(4744 images)grayscale: Set12 + BSD68 + Urban100 color: CBSD68 + Kodak24 + McMaster + Urban100 download allJPEG compression artifact reductionDIV2K (800 training images) + Flickr2K (2650 images) + BSD500 (400 training&testing images) + WED(4744 images)grayscale: Classic5 +LIVE1 download all

我下载了DIV2K数据集和 Flickr2K数据集,DIV2K大小有7G+,Flickr2K约20G。如果网速不好建议只下载DIV2K。

注:在选用classical任务,做训练时,只能使用DIV2K或者Flickr2K,不能把两种数据集放在一起训练,否则就出现维度对不上的情况,如下图:

暂时没有找到原因。

构建测试集,测试集的路径如下图:

由于表格中的测试集放在google,我不能下载,但是SwinIR的测试代码中有测试集,代码链接:https://github.com/JingyunLiang/SwinIR,下载下来直接复制到testsets文件夹下面。

SwinIR实战:详细记录SwinIR的训练过程

构建训练集,将下载下来的DIV2K解压。将DIV2K_train_HR复制到trainsets文件夹下面,将其改为trainH。

将DIV2K_train_LR_bicubic文件夹的X2文件夹复制到trainsets文件夹下面,然后将其改名为trainL。

到这里,数据集部分就完成了,接下来开始训练。

训练

首先,打开options/swinir/train_swinir_sr_classical.json文件,查看里面的内容。

"task": "swinir_sr_classical_patch48_x2"

训练任务的名字。

"gpu_ids": [0,1]

选择GPU的ID,如果只有一快GPU,改为 [0]。如果有更多的GPU,直接往后面添加即可。

"scale": 2 //2,3,48

放大的倍数,可以设置为2、3、4、8.

"datasets": { "train": { "name": "train_dataset" // just name , "dataset_type": "sr" // "dncnn" | "dnpatch" | "fdncnn" | "ffdnet" | "sr" | "srmd" | "dpsr" | "plain" | "plainpatch" | "jpeg" , "dataroot_H": "trainsets/trainH"// path of H training dataset. DIV2K (800 training images) , "dataroot_L": "trainsets/trainL" // path of L training dataset , "H_size": 96 // 96/144|192/384 | 128/192/256/512. LR patch size is set to 48 or 64 when compared with RCAN or RRDB. , "dataloader_shuffle": true , "dataloader_num_workers": 4 , "dataloader_batch_size": 1 // batch size 1 | 16 | 32 | 48 | 64 | 128. Total batch size =4x8=32 in SwinIR } , "test": { "name": "test_dataset" // just name , "dataset_type": "sr" // "dncnn" | "dnpatch" | "fdncnn" | "ffdnet" | "sr" | "srmd" | "dpsr" | "plain" | "plainpatch" | "jpeg" , "dataroot_H": "testsets/Set5/HR" // path of H testing dataset , "dataroot_L": "testsets/Set5/LR_bicubic/X2" // path of L testing dataset }}

上面的参数是对数据集的设置。 “H_size”: 96 ,HR图像的大小,和下面的img_size有对应关系,大小设置为img_size×scale。

“dataloader_num_workers”: 4,CPU的核数设置。

“dataloader_batch_size”: 32 ,设置训练的batch_size。

dataset_type:sr,指的是数据集类型SwinIR。

"netG": { "net_type": "swinir" , "upscale": 2 // 2 | 3 | 4 | 8 , "in_chans": 3 , "img_size": 48 // For fair comparison, LR patch size is set to 48 or 64 when compared with RCAN or RRDB. , "window_size": 8 , "img_range": 1.0 , "depths": [6, 6, 6, 6, 6, 6] , "embed_dim": 180 , "num_heads": [6, 6, 6, 6, 6, 6] , "mlp_ratio": 2 , "upsampler": "pixelshuffle" // "pixelshuffle" | "pixelshuffledirect" | "nearest+conv" | null , "resi_connection": "1conv" // "1conv" | "3conv" , "init_type": "default" }

upscale:2,放大的倍数,和上面的scale参数对应。

img_size:48,这里可以设置两个数值,48和64。和测试的training_patch_size参数对应。

官方提供的指令是基于DDP方式,比较复杂一下,好处是速度快。如下:

# 001 Classical Image SR (middle size)python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_psnr.py --opt options/swinir/train_swinir_sr_classical.json --dist True# 002 Lightweight Image SR (small size)python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_psnr.py --opt options/swinir/train_swinir_sr_lightweight.json --dist True# 003 Real-World Image SR (middle size)python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_psnr.py --opt options/swinir/train_swinir_sr_realworld_psnr.json --dist True# before training gan, put the PSNR-oriented model into superresolution/swinir_sr_realworld_x4_gan/models/python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_psnr.py --opt options/swinir/train_swinir_sr_realworld_gan.json --dist True# 004 Grayscale Image Deoising (middle size)python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_psnr.py --opt options/swinir/train_swinir_denoising_gray.json --dist True# 005 Color Image Deoising (middle size)python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_psnr.py --opt options/swinir/train_swinir_denoising_color.json --dist True# 006 JPEG Compression Artifact Reduction (middle size)python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 main_train_psnr.py --opt options/swinir/train_swinir_car_jpeg.json --dist True

我没有使用上面的方式,而是选择用DP的方式,虽然慢一点,但是简单,更稳定。

在Terminal里面输入:

python main_train_psnr.py --opt options/swinir/train_swinir_sr_classical.json

即可开始训练。

运行结果如下:

等待训练完成后,我们使用测试代码测试。将模型复制到./model_zoo/swinir文件夹下面

输入命令:

python main_test_swinir.py --task classical_sr --scale 2 --training_patch_size 48 --model_path model_zoo/swinir/45000_G.pth --folder_lq testsets/Set5/LR_bicubic/X2

然后在result下面可以看到测试结果。

完整的代码:

https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/85258387

本文链接地址:https://www.jiuchutong.com/zhishi/297369.html 转载请保留说明!

上一篇:Vue使用axios用post方式将表单中的数据以json格式提交给后端接收(vue-axios详细介绍)

下一篇:Repvgg详解及其实现(pytorch)(rep p)

  • 城建税和教育费附加需要计提吗
  • 车辆购置税是什么税种
  • 增值税普通发票和电子普通发票的区别
  • 预计产品质量保证损失是什么意思
  • 企业购买理财都需先交税再提现吗
  • 旅游公司如何缴费
  • 应交税金及附加包括哪些
  • 收款费用明细表
  • 物业公司收入需要公示
  • 增值税税控系统专用设备注销发行
  • 新办企业需要做什么
  • 小规模纳税人咨询服务费税率是多少
  • 哪些津贴免征个税
  • 企业开具咨询费的发票
  • 一般纳税人有进项无销项
  • 五金配件做什么科目
  • 银行认购公司债券的条件
  • 固定资产清理出售合同
  • 城建税的会计分录是什么
  • 华为手机hms提醒
  • 报销差旅费退回余款填什么凭证
  • 会计管理制度范本
  • 债券类资产的远期合约是什么
  • 什么车不用交保险
  • 存货损失进项税
  • 评估增值资产如何记账
  • 内置管理员无法激活
  • 低值易耗品的管理和流程ppt
  • 企业低值易耗品摊销计入产品成本的方法
  • JS XMLHttpRequest对象详解
  • Yii1.1中通过Sql查询进行的分页操作方法
  • 七月份收入
  • web网页设计期末作业猫眼电影首页
  • 现代服务增值税纳税义务发生时间
  • 公益性捐赠支出纳税调整
  • 内部交易费用外部交易费用
  • 一字节的范围
  • sql group by
  • 套期保值和套期图利
  • 财政专户资金支出
  • 简易计税是否要计增值税
  • 一般纳税人增值税怎么做账务处理
  • 计提贷款损失准备的意义
  • 公司水电费分摊怎么算
  • 建筑公司工资如何
  • 非同一控制下企业合并取得的长期股权投资
  • 差旅费中住宿费的标准是什么
  • 淘宝卖家运费险为什么越来越贵
  • 微信收入构成在哪
  • 公司投资款怎么算
  • 电子发票上面的字体是什么字体
  • 发票报销是什么流程
  • 银行回单和发票哪个粘贴到上面
  • mysql 5.7.18 winx64密码修改
  • win10 0×0000007b怎么解决
  • xp系统删除文件怎么删
  • linux版flash
  • centos源码安装软件
  • win8应用显示错误
  • tr linux 命令
  • mac验证码无法显示怎么办
  • windows疑难解答在哪里
  • islp2sta.exe - islp2sta是什么进程 有什么作用
  • 桌面的word
  • win8删除文件很慢
  • 手机更新升级版本下载
  • win81怎么取消开机密码
  • linux挂载的概念
  • messenger api
  • vue组件精讲
  • js判断页面是否跳出弹窗
  • JavaScript+html5 canvas绘制缤纷多彩的三角形效果完整实例
  • jquery 跨域方法
  • string和stringbuffer创建后都可以修改
  • 设置自定义
  • 北京市社会团体
  • 海淀区地税局电话
  • 财税咨询服务内容包括
  • 湖北国税办税人是谁
  • 如何撤销工商注册登记
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设