位置: IT常识 - 正文

YOLOv7(目标检测)入门教程详解---检测,推理,训练(yolov5目标检测代码)

编辑:rootadmin
YOLOv7(目标检测)入门教程详解---检测,推理,训练

目录

一.前言

二.yolov7源码下载

三.detect(检测)

四.Train(训练)

数据准备:

labellmg:

配置训练的相关文件

 配置数据集文件

正式训练:

推理:

推理效果:

五.总结


一.前言

推荐整理分享YOLOv7(目标检测)入门教程详解---检测,推理,训练(yolov5目标检测代码),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov5目标检测代码,yolov5目标检测,yolov3目标检测,yolo 目标检测,yolov3目标检测步骤流程图,yolo 目标检测,yolo 目标检测,yolov5目标检测,内容如对您有帮助,希望把文章链接给更多的朋友!

    上篇文章:YOLOv7(目标检测)入门教程详解---环境安装 我们将yolov7外部需要的环境已经全部安装完成,那么这篇文章我们直接进行yolov7的实战----检测,推理,训练。

二.yolov7源码下载

下载网址:GitHub - WongKinYiu/yolov7: Implementation of paper - YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

点击Code,Download ZIP  把yolov7的源码包下载下来 

 下载好后打开yolov7源码包

在文件路径输入cmd进入终端

 之后在终端activate进入之前创建的环境,并且输入

pip install -r requirements.txt

强调:关掉电脑VPN 

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple,输入这个指令可能会更快一点

我是之前安装过后,所有再输入安装指令后就会显示全部满足,你们也可以通过这样查看自己是否安装成功

 此时我们来到官网下载权重,一个是Test用的yolov7.pt

一个是之后 Train 用的yolov7_training.pt

 在yolov7的文件夹路径下建一个weights文件夹,然后把刚刚下载好的两个权重放进去。

 此刻基本需要的环境和文件都已经准备完成了,接下来我们就可以进行detect(检测了)

三.detect(检测)

进入虚拟环境,输入以下指令 

python detect.py --weights weights/yolov7.pt --source inference/images

 --weights 指令就是代表权重 --source 是照片存在的路径

 检测过程如下

 这里可以使用GPU和CPU两种方式进行检测,因为我们之前装了cuda和cudnn所以可以用GPU

只不过我们需要输入--device 0 这个指令,不输入则默认为CPU,我是改了detect源码里面的指令

还有更多操作,我们可以打开detect.py进行查看

 

 如果你只有cpu就默认cpu,如果是一个gpu就选择--device 0 两块cpu就--deivce 1,以此类推。

我们来看看我们训练之后的结果,进入runs-->detect-->exp 里面有所有预测好的照片

 

四.Train(训练)

参考博客:【小白教学】如何用YOLOv7训练自己的数据集 - 知乎

数据准备:

我们生成/datasets/文件夹,把数据都放进这个文件夹里进行统一管理。训练数据用的是yolo数据格式,不过多了两个.txt文件,这两个文件存放的,是每个图片的路径,后面会具体介绍。

那么接下来yolo数据集的整体格式如下:

 Helmet是你想检测的东西名称,我检测的是圆环所以命名为circle

 进入circle文件夹之后,会看到有images 和labels的文件夹,一个是拿来放图片的,一个是拿来存images文件夹中处理jpg图片之后的txt数据

打开images文件夹,我们又要建两个文件夹:train 和 val,并且把想要训练的照片放进去,两个都放差不多数量

 打开labels文件夹,同样建两个文件train和val,然后就ok了

YOLOv7(目标检测)入门教程详解---检测,推理,训练(yolov5目标检测代码)

接下来我们就要用到一个软件去处理我们的图片,将其转化为yolo格式

labellmg:

参考博客:labelImg使用教程_G果的博客-CSDN博客_labelimg

 进入终端,输入指令进行下载

输入labellmg打开软件 

 然后我们使用labellmg进行对图片的处理,首先open dir选择图片路径,我们先选择刚刚创建的datasets/circle/images/train  然后change save dir选择datasets/circle/labels/train,这样我们对image的每张图片的处理都会储存进label中  之后val也是同理。

之后就把每一个你想训练的目标给框出来然后进行命名,但是必须要改成YOLO格式

之后打开我们的labels就能发现里面储存了images中每张图片对应的txt文件

然后我们进入datasets/circle文件夹下面,建立两个txt文件,train.txt  val.txt,这两个文件分为写入所有images中train和val中的照片路径

配置训练的相关文件

  总共有两个文件需要配置,一个是/yolov7/cfg/training/yolov7.yaml,这个文件是有关模型的配置文件;一个是/yolov7/data/coco.yaml,这个是数据集的配置文件。

第一步,复制yolov7.yaml文件到相同的路径下,然后重命名,我们重命名为yolov7-Helmet.yaml。

第二步,打开yolov7-circle.yaml文件,进行如下图所示的修改,这里修改的地方只有一处,就是把nc修改为我们数据集的目标总数即可。然后保存。

 配置数据集文件

第一步,复制coco.yaml文件到相同的路径下,然后重命名,我们命名为circle.yaml。

第二步,打开circle.yaml文件,进行如下所示的修改,需要修改的地方为5处。第一处:把代码自动下载COCO数据集的命令注释掉,以防代码自动下载数据集占用内存;第二处:修改train的位置为train.txt的路径;第三处:修改val的位置为val.txt的路径;第四处:修改nc为数据集目标总数;第五处:修改names为数据集所有目标的名称。然后保存。

我的参照上图改好如下 

之后我们就可以进行训练了!!!

正式训练:

此时我们在yolov7文件夹路径下cmd,并且进入虚拟环境,输入指令

python train.py --weights weights/yolov7_training.pt --cfg cfg/training/yolov7-circlr.yaml --data data/circlr.yaml --device 0 --batch-size 8 --epoch 300

这里对里面的参数进行解释

--cfg 接受模型配置的参数

--data 接收数据配置的参数

--device 0  训练类型,我是一块GPU 所以用0

--batch-size 8  GPU内存大小决定

--epoch 训练次数,建议300

--weights 训练的权重

训练到最后我们就会得到一个last 和best的pt文件,那么我们直接把best.pt拿出来使用就ok了

推理:

我们已经获得了自己训练出来的权重了,那么这个时候推理,其实跟之前检测的道理是一样的,唯一变换的就是我们的权重文件和自己检测的照片 。

这个时候我们在datasets文件夹下面建立一个textimages文件夹和textvideo文件夹,分别用来储存要被检测的图片和视频

 

 跟detect一样,进入虚拟环境输入权重路径和图片路径就ok了,指令如下

我是把best.pt直接拉到了yolov7文件夹路径下面,你们刚刚训练出来的在runs/train/circle/weights/best.pt

python detect.py --weights best.pt --source datasets/textimages --device 0

 

 可以看到用gpu训练的yolov7是相当的快,我显卡是3070的,大概一张照片15ms左右的样子,如果用CPU的话,速度要慢十倍左右

推理效果:

我打开runs/detect/exp查看我们的训练效果

 

 可以说效果是非常好的,方框上面的数值就是置信度了,只要训练的好,yolov7的处理能力非常的强大。

五.总结

  那么yolov7的检测,训练,推理的全部流程都已经可以实现了,但是这个是基于python环境下的,如果有特殊的需求需要在c++环境下去进行yolo检测的话,那就又另有一方折腾了,我会在之后的博客中说到如何在c++中去使用yolov7检测。

有相关问题可以私信我进行讨论

本文链接地址:https://www.jiuchutong.com/zhishi/297376.html 转载请保留说明!

上一篇:块元素和行内元素及其元素转换(块元素和行内元素区别)

下一篇:把ChatGPT接入我的个人网站

  • 个人所得税的账务处理
  • 个人劳务报酬所得汇算清缴
  • 软件公司企业成本预测
  • 预缴增值税如何计提
  • 购入设备发生的运输费计入什么科目
  • 商业企业的商品销售额、职工人数是( )
  • 私营企业实行固定税率
  • 收到合同款
  • 水电费差价收入计算增值税公式是怎样的?
  • 业务招待费扣除计算举例说明
  • 不开外经证的后果
  • 金融保险服务业
  • 资产负债表写错数字怎么改
  • 个人公寓出租给公司要交税吗?
  • 购买用于产品设计拍摄的道具怎么做账?
  • 租赁费摊销计入什么科目
  • bioss设置
  • 投资回报周期是多少天
  • 通用pe工具箱安装教程
  • deepin 终端命令
  • icon files
  • 建筑业主营业务成本包括哪些
  • php数组函数 菜鸟
  • win10回滚系统
  • pc应用是什么意思
  • 最小的电视棒是多少寸
  • 预支员工报销费用会计科目
  • codeigniter 教程
  • 总账是按年还是按月结账
  • 已缴款未入库是扣款成功了吗
  • ai绘画网站
  • d2loader does not recognize
  • 商场售后返租
  • 车间打杂工
  • mysql的存储
  • 会计月末账务处理方法
  • 进口消费税如何计税
  • 为员工购买意外险会计处理
  • 净资产包含哪些方面
  • 海关报关单位注销操作规程
  • sqlserver 进程死锁
  • 车保险名称
  • 生育津贴是否需要缴纳增值税
  • 付款方和发票抬头不一致会计处理
  • 营改增阶段
  • 公司车辆保养计入什么费用
  • 只有合同没发票能挂账吗
  • 小规模纳税人开专票需要交税吗
  • 财税2009年87号文废止
  • 食堂如何做账
  • 流动比率怎么算出来的
  • linux bin sbin
  • 收缩后对数据库有影响吗
  • execve函数
  • mysql rand整数
  • SQLServer CONVERT 函数测试结果
  • mysql 5.7.17 64bit安装配置方法图文教程
  • windows10内置应用是哪些
  • Mac如何使用clash上外网
  • windows8远程桌面连接
  • centos挂载lun
  • win10系统如何清洗打印机喷头
  • WinXp x64sp企业订户最新完整纯净版安装指南
  • linux图形界面与命令行
  • win8怎么系统重装系统
  • 安卓opengl es
  • jquery元素隐藏和显示切换
  • 用kotlin开发android
  • cocos2d android
  • c/s模式的例子
  • Https联网工具类
  • jquery移出class
  • android接听电话
  • android技术总结
  • AndroidAnnotations框架Eclipse下的配置
  • python文件描述符
  • js中的substring
  • 如何解决android兼容问题
  • 江苏单位医保如何查询
  • 讨论如何做好寺庙管理服务工作
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设