位置: IT常识 - 正文

让 new bing 使用 GPT-4 编写一个令人满意的程序全过程赏析

编辑:rootadmin
让 new bing 使用 GPT-4 编写一个令人满意的程序全过程赏析

推荐整理分享让 new bing 使用 GPT-4 编写一个令人满意的程序全过程赏析,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

让 new bing 使用 GPT-4 编写一个令人满意的程序全过程赏析

标签:new bing、GPT-4

文章目录让 new bing 使用 GPT-4 编写一个令人满意的程序全过程赏析前言1 让 bing 编写一个画螺旋线的程序1.1 我的要求(1)1.2 bing 的回答全文(1)1.3 bing 编写的程序1.4 程序运行的结果2 让 bing 去掉多余的第一笔2.1 我的要求(2)2.2 bing 的回答全文(2)2.3 我的要求(3)2.4 bing 的回答全文(3)2.5 我的要求(4)2.6 bing 的回答全文(4)2.7 我的要求(5)2.8 bing 的回答全文(5)2.9 bing 编写的程序2.10 程序运行的结果3 改正第二笔起笔没有放下的错误3.1 我的要求(6)3.2 bing 的回答全文(6)3.3 我的要求(7)3.4 bing 的回答全文(7)3.5 bing 编写的程序3.6 程序运行的结果3.7 我的要求(8)3.8 bing 的回答全文(8)3.9 bing 编写的程序3.10 程序运行的结果3.11 我的要求(9)3.12 bing 的回答全文(9)3.13 bing 编写的程序3.14 程序运行的结果3.15 我的要求(10)3.16 bing 的回答全文(10)3.17 我的要求(11)3.18 bing 的回答全文(11)3.19 我的要求(12)3.20 bing 的回答全文(12)4 让画笔箭头方向跟螺旋线方向一致4.1 我的要求(13)4.2 bing 的回答全文(13)4.3 bing 编写的程序4.4 程序运行的结果4.5 我的要求(14)4.6 bing 的回答全文(14)4.7 bing 编写的程序4.8 程序运行的结果结语前言

前天 Open AI 的 GPT-4上线了,所能达到的高度惊爆人的眼球。上线当天,我就把应用 GPT-4 的新版微软搜索引擎 bing 使用环境配置好了。今天试着用这个 bing 的聊天功能,一步步与 bing 沟通,真还让 bing 替我编写了一个令我满意的 Python 程序。而这个画阿基米德螺旋线的 Python 程序,我在几年前自己 Coding 竟然花了半个月,才达到满意的结果。新科技带来的变化,令人眼花缭乱、一时难以判断走向,是不是很惊恐? 下面就在这里展现、赏析这个聊天过程吧。

1 让 bing 编写一个画螺旋线的程序1.1 我的要求(1)

1.2 bing 的回答全文(1)

由于 bing Chat 还不支持完整截图,去网页打开吧。点击此处或者复制链接后在 new bing 中打开(需要在 new bing 中登录后才能打开,下同)。

1.3 bing 编写的程序

为了美观,略有改动(step *= 0.99改为step *= 0.999),下同。

# 导入turtle模块,用于绘图import turtle# 导入math模块,用于计算import math# 创建一个turtle对象,命名为tt = turtle.Turtle()# 设置画笔的颜色和速度t.color("blue")t.speed(0)# 设置阿基米德螺旋线的参数a = 5 # 螺旋线的起始半径b = 0.1 # 螺旋线的增长系数angle = 0 # 螺旋线的起始角度step = 5 # 螺旋线的步长# 循环绘制阿基米德螺旋线,直到半径超过200像素或角度超过1080度while a < 200 and angle < 1080: # 计算阿基米德螺旋线上当前点的极坐标(r, theta) r = a + b * angle # 半径等于起始半径加上增长系数乘以角度 theta = math.radians(angle) # 角度转换为弧度制 # 计算阿基米德螺旋线上当前点的直角坐标(x, y) x = r * math.cos(theta) # x坐标等于半径乘以余弦值 y = r * math.sin(theta) # y坐标等于半径乘以正弦值 # 移动画笔到当前点,并画出一小段曲线 t.goto(x, y) # 更新角度和步长,使得曲线更平滑 angle += step step *= 0.999# 结束绘图,并保持窗口显示直到用户关闭 turtle.done()1.4 程序运行的结果

2 让 bing 去掉多余的第一笔

看上去从原点到螺旋线的起点的那条很短的直线即第一笔不是螺旋线的一部分,是多余的。

2.1 我的要求(2)

2.2 bing 的回答全文(2)

点击此处或者复制链接后在 new bing 中打开。

2.3 我的要求(3)

2.4 bing 的回答全文(3)

点击此处或者复制链接后在 new bing 中打开。

2.5 我的要求(4)

2.6 bing 的回答全文(4)

点击此处或者复制链接后在 new bing 中打开。

2.7 我的要求(5)

2.8 bing 的回答全文(5)

点击此处或者复制链接后在 new bing 中打开。

2.9 bing 编写的程序# 导入turtle模块,用于绘图import turtle# 导入math模块,用于计算import math# 创建一个turtle对象,命名为tt = turtle.Turtle()# 设置画笔的颜色和速度t.color("blue")t.speed(0)# 设置阿基米德螺旋线的参数a = 5 # 螺旋线的起始半径b = 0.1 # 螺旋线的增长系数angle = 0 # 螺旋线的起始角度step = 5 # 螺旋线的步长# 抬起画笔,不留痕迹(新增代码)t.penup()# 循环绘制阿基米德螺旋线,直到半径超过200像素或角度超过1080度while a < 200 and angle < 1080: # 计算阿基米德螺旋线上当前点的极坐标(r, theta) r = a + b * angle # 半径等于起始半径加上增长系数乘以角度 theta = math.radians(angle) # 角度转换为弧度制 # 计算阿基米德螺旋线上当前点的直角坐标(x, y) x = r * math.cos(theta) # x坐标等于半径乘以余弦值 y = r * math.sin(theta) # y坐标等于半径乘以正弦值 # 移动画笔到当前点,并画出一小段曲线 t.goto(x, y) # 更新角度和步长,使得曲线更平滑 angle += step step *= 0.999# 放下画笔,开始绘制(新增代码)t.pendown()# 结束绘图,并保持窗口显示直到用户关闭 turtle.done()2.10 程序运行的结果

3 改正第二笔起笔没有放下的错误

从运行结果看,第一笔前把笔抬起后,没有及时放下,导致后边的笔画全部没有画,需要改正。

3.1 我的要求(6)

3.2 bing 的回答全文(6)

点击此处或者复制链接后在 new bing 中打开。

3.3 我的要求(7)让 new bing 使用 GPT-4 编写一个令人满意的程序全过程赏析

3.4 bing 的回答全文(7)

点击此处或者复制链接后在 new bing 中打开。

3.5 bing 编写的程序# 导入turtle模块,用于绘图import turtle# 导入math模块,用于计算import math# 创建一个turtle对象,命名为tt = turtle.Turtle()# 设置画笔的颜色和速度t.color("blue")t.speed(0)# 设置阿基米德螺旋线的参数a = 5 # 螺旋线的起始半径b = 0.1 # 螺旋线的增长系数angle = 0 # 螺旋线的起始角度step = 5 # 螺旋线的步长# 抬起画笔,不留痕迹(新增代码)t.penup()# 循环绘制阿基米德螺旋线,直到半径超过200像素或角度超过1080度while a < 200 and angle < 1080: # 计算阿基米德螺旋线上当前点的极坐标(r, theta) r = a + b * angle # 半径等于起始半径加上增长系数乘以角度 theta = math.radians(angle) # 角度转换为弧度制 # 计算阿基米德螺旋线上当前点的直角坐标(x, y) x = r * math.cos(theta) # x坐标等于半径乘以余弦值 y = r * math.sin(theta) # y坐标等于半径乘以正弦值 # 移动画笔到当前点,并画出一小段曲线 t.goto(x, y) # 更新角度和步长,使得曲线更平滑 angle += step step *= 0.999# 放下画笔,开始绘制(新增代码)t.pendown()# 结束绘图,并保持窗口显示直到用户关闭 turtle.done()3.6 程序运行的结果

3.7 我的要求(8)

3.8 bing 的回答全文(8)

点击此处或者复制链接后在 new bing 中打开。

3.9 bing 编写的程序# 导入turtle模块,用于绘图import turtle# 导入math模块,用于计算import math# 创建一个turtle对象,命名为tt = turtle.Turtle()# 设置画笔的颜色和速度t.color("blue")t.speed(0)# 设置阿基米德螺旋线的参数a = 5 # 螺旋线的起始半径b = 0.1 # 螺旋线的增长系数angle = 0 # 螺旋线的起始角度step = 5 # 螺旋线的步长# 抬起画笔,不留痕迹(新增代码)t.penup()# 循环绘制阿基米德螺旋线,直到半径超过200像素或角度超过1080度while a < 200 and angle < 1080: # 计算阿基米德螺旋线上当前点的极坐标(r, theta) r = a + b * angle # 半径等于起始半径加上增长系数乘以角度 theta = math.radians(angle) # 角度转换为弧度制 # 计算阿基米德螺旋线上当前点的直角坐标(x, y) x = r * math.cos(theta) # x坐标等于半径乘以余弦值 y = r * math.sin(theta) # y坐标等于半径乘以正弦值 # 放下画笔,开始绘制(新增代码) t.pendown() # 移动画笔到当前点,并画出一小段曲线 t.goto(x, y) # 更新角度和步长,使得曲线更平滑 angle += step step *= 0.999# 结束绘图,并保持窗口显示直到用户关闭 turtle.done()3.10 程序运行的结果

3.11 我的要求(9)

3.12 bing 的回答全文(9)

点击此处或者复制链接后在 new bing 中打开。

3.13 bing 编写的程序# 导入turtle模块,用于绘图import turtle# 导入math模块,用于计算import math# 创建一个turtle对象,命名为tt = turtle.Turtle()# 设置画笔的颜色和速度t.color("blue")t.speed(0)# 设置阿基米德螺旋线的参数a = 5 # 螺旋线的起始半径b = 0.1 # 螺旋线的增长系数angle = 0 # 螺旋线的起始角度step = 5 # 螺旋线的步长# 循环绘制阿基米德螺旋线,直到半径超过200像素或角度超过1080度while a < 200 and angle < 1080: # 计算阿基米德螺旋线上当前点的极坐标(r, theta) r = a + b * angle # 半径等于起始半径加上增长系数乘以角度 theta = math.radians(angle) # 角度转换为弧度制 # 计算阿基米德螺旋线上当前点的直角坐标(x, y) x = r * math.cos(theta) # x坐标等于半径乘以余弦值 y = r * math.sin(theta) # y坐标等于半径乘以正弦值 if angle > 0: # 如果角度大于0,说明不是第一笔(新增代码) t.pendown() # 放下画笔,开始绘制(新增代码) else: # 否则,说明是第一笔(新增代码) t.penup() # 抬起画笔,不留痕迹(新增代码) # 移动画笔到当前点,并画出一小段曲线 t.goto(x, y) # 更新角度和步长,使得曲线更平滑 angle += step step *= 0.999# 结束绘图,并保持窗口显示直到用户关闭 turtle.done()3.14 程序运行的结果

至此,必应终于把多余的第一笔去掉了。表扬一下。

3.15 我的要求(10)

3.16 bing 的回答全文(10)

点击此处或者复制链接后在 new bing 中打开。

为了 new bing 以后能正确画出,特意总结了一下,令人发笑的是 new bing 还找了理由推脱。

3.17 我的要求(11)

3.18 bing 的回答全文(11)

(略)

3.19 我的要求(12)

3.20 bing 的回答全文(12)

点击此处或者复制链接后在 new bing 中打开。

4 让画笔箭头方向跟螺旋线方向一致

画笔箭头方向始终朝着右面,感觉怪怪的,让 bing 改一下。

4.1 我的要求(13)

4.2 bing 的回答全文(13)

点击此处或者复制链接后在 new bing 中打开。

4.3 bing 编写的程序# 导入turtle模块,用于绘图import turtle# 导入math模块,用于计算import math# 创建一个turtle对象,命名为tt = turtle.Turtle()# 设置画笔的颜色和速度t.color("blue")t.speed(0)# 设置阿基米德螺旋线的参数a = 10 # 螺旋线的起始半径(修改代码)b = 0.1 # 螺旋线的增长系数angle = 0 # 螺旋线的起始角度(修改代码)step = 5 # 螺旋线的步长# 移动画笔到原点(0, 0)(新增代码)t.goto(0, 0)# 循环绘制阿基米德螺旋线,直到半径超过200像素或角度超过1080度while a < 200 and angle < 1080: # 计算阿基米德螺旋线上当前点的极坐标(r, theta) r = a + b * angle # 半径等于起始半径加上增长系数乘以角度 theta = math.radians(angle) # 角度转换为弧度制 # 计算阿基米德螺旋线上当前点的直角坐标(x, y) x = r * math.cos(theta) # x坐标等于半径乘以余弦值 y = r * math.sin(theta) # y坐标等于半径乘以正弦值 if angle > 0: # 如果角度大于0,说明不是第一笔(新增代码) t.pendown() # 放下画笔,开始绘制(新增代码) else: # 否则,说明是第一笔(新增代码) t.penup() # 抬起画笔,不留痕迹(新增代码) # 设置画笔朝向与螺旋线方向一致(新增代码) t.setheading(angle) # 移动画笔到当前点,并画出一小段曲线 t.goto(x, y) # 更新角度和步长,使得曲线更平滑 angle += step step *= 0.99# 结束绘图,并保持窗口显示直到用户关闭 turtle.done()4.4 程序运行的结果

还是不正确,画笔箭头方向与螺旋线垂直了。

4.5 我的要求(14)

4.6 bing 的回答全文(14)

(略)

4.7 bing 编写的程序# 设置画笔的颜色和速度t.color("blue")t.speed(0)# 设置阿基米德螺旋线的参数a = 10 # 螺旋线的起始半径(修改代码)b = 0.1 # 螺旋线的增长系数angle = 0 # 螺旋线的起始角度(修改代码)step = 5 # 螺旋线的步长# 移动画笔到原点(0, 0)(新增代码)t.goto(0, 0)# 循环绘制阿基米德螺旋线,直到半径超过200像素或角度超过1080度while a < 200 and angle < 1080: # 计算阿基米德螺旋线上当前点的极坐标(r, theta) r = a + b * angle # 半径等于起始半径加上增长系数乘以角度 theta = math.radians(angle) # 角度转换为弧度制 # 计算阿基米德螺旋线上当前点的直角坐标(x, y) x = r * math.cos(theta) # x坐标等于半径乘以余弦值 y = r * math.sin(theta) # y坐标等于半径乘以正弦值 if angle > 0: # 如果角度大于0,说明不是第一笔(新增代码) t.pendown() # 放下画笔,开始绘制(新增代码) else: # 否则,说明是第一笔(新增代码) t.penup() # 抬起画笔,不留痕迹(新增代码) # 设置画笔朝向与螺旋线方向一致(新增代码) t.setheading(angle + 90) # 移动画笔到当前点,并画出一小段曲线 t.goto(x, y) # 更新角度和步长,使得曲线更平滑 angle += step step *= 0.999# 结束绘图,并保持窗口显示直到用户关闭 turtle.done()4.8 程序运行的结果

结语

通过与 new bing 沟通,让 bing 为我编写了一个令人满意的程序。从中可以得出以下启发:

1、我们需要 new bing 做的事情可以逐步描述,并不需要一次描述清楚;2、new bing 还会犯糊涂,需要不断指正。
本文链接地址:https://www.jiuchutong.com/zhishi/297505.html 转载请保留说明!

上一篇:Vue+Element UI-el-date-picker时间日期选择器组件(实现向后端传值)

下一篇:【web服务】nginx为什么这么受企业欢迎?看完这边文章你就懂了(nginx webservice)

  • 工商注册经营部和公司的区别
  • 财务发票报销时限是多久
  • 红字信息表可以开一半吗
  • 销售费用与管理的关系
  • 退休人员工资可以提福利费吗
  • 会计凭证保管的含义及要求
  • 建筑企业增值税怎么算
  • 人力资源外包服务费计入什么科目
  • 购进客房用品取得增值税专用发票注明税额9120
  • 水利建设专项收入怎么报税
  • 业务员出差借款,用途写什么
  • 库存现金多了是什么原因
  • 可以通过哪些渠道获得就业信息
  • 企业更换银行卡意味着什么
  • 基建管理费如何进行结转?
  • 权益净利率计算公式推导
  • 利润分配的途径
  • 什么发票可以抵成本
  • 以存货对外投资,现金流量表
  • 房子转租扣钱吗
  • 付款网站制作
  • 税控设备 抵减
  • 受托加工委托方销售产品
  • 微信公众号开发php源码
  • 冲办公费会计分录
  • 已缴税额比应纳税额多
  • PHP中使用什么关键字声明变量的作用域为全局
  • 高新技术企业在哪申报年报
  • 计提房产税会计分录怎么做账
  • 技术维护服务费
  • 调参技巧
  • 关于幼儿园国培的要求和建议
  • 营业外收支的账户是什么
  • 非贸备案什么意思
  • 发生售后维修领用材料分录
  • python爬虫入门教程
  • 关联方利息支出税前扣除规定
  • 收到境外服务费会计分录
  • 待报解预算收入扣款是什么意思
  • 企业季度所得税申报流程
  • 合伙企业年底如何做账
  • 预付房租摊销
  • 有限合伙企业中有限合伙人承担责任的方式为
  • 视同销售是按成本价入账还是按计税价格入账,为什么?
  • 没开发票能确认没开发票能确认收入申报纳税吗?
  • 工程挂靠取得的收入怎么做账?
  • 差旅费用包含哪些
  • 没有发票财务报表怎么做
  • SQL Server 作业同步 (结合备份作业)
  • mysql coalesce函数用法
  • freebsd login
  • 把winpe安装至系统盘
  • wrme.exe是什么
  • linux ./ 命令
  • 开机停在american megatrends
  • centos fio
  • win10一年更新几次
  • 一键快速关机下载手机版
  • gnome版本
  • win8怎么调整屏幕分辨率
  • vs2010配置opengl
  • 优质安卓应用
  • perl读取文件内容到数组
  • unity android build support
  • jquery删除所有class
  • unity 协作
  • 简单阐述javascript的主要作用
  • javascript中window.event事件用法详解
  • js圆形链
  • webservice规范
  • android网络开发技术答案形考任务五
  • jQuery Ajax 加载数据时异步显示加载动画
  • Android Listview addHeaderView setadapter的时候莫名NullPointerException 解决
  • jquery悬浮弹出提示框
  • jquery 动态添加元素
  • js dom操作方法
  • 变更主管税务机关需要注销吗
  • 高速公路通行费的税率
  • 重庆路桥价值
  • 7月税务征收期
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设