位置: IT常识 - 正文

yolox改进--添加Coordinate Attention模块(CVPR2021)(yolo改进方法)

编辑:rootadmin
yolox改进--添加Coordinate Attention模块(CVPR2021) yolox改进--添加Coordinate Attention模块Coordinate Attention代码建立包含CAM代码的attention.py在yolo_pafpn.py中添加CAM总结

推荐整理分享yolox改进--添加Coordinate Attention模块(CVPR2021)(yolo改进方法),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov2改进,yolo增加检测层,yolov5如何改进,yolo增加检测层,改进yolov3,改进yolov3,yolov2改进,改进yolov3,内容如对您有帮助,希望把文章链接给更多的朋友!

因为项目需要,尝试魔改一下yolox-s,看看能不能在个人数据集上刷高点mAP。因为Coordinate Attention模块(以下简称CAM)的作者提供了代码,并且之前不少博主公开了CAM用在yolov5或者yolox等模型的代码,所以一开始我直接当了搬运工,但在搬运过程,我发现官方的代码不能直接用在yolox上,且之前公开CAM用在yolox的代码根本跑不通。在debug之后,发现问题是出现在官方的代码上,于是心血来潮写下这篇文章,废话不多说,来看修改后的代码吧!

Coordinate Attentionyolox改进--添加Coordinate Attention模块(CVPR2021)(yolo改进方法)

论文来源: http://arxiv.org/abs/2103.02907 官方代码:https://github.com/Andrew-Qibin/CoordAttention

注意力机制广泛用于深度神经网络中来提高模型的性能。然而,因为其昂贵的计算代价,很难应用在一些轻量级网络,但不乏有一些注意力模块脱颖而出,具有代表性的有SE、CBAM等。SE模块通过2D全局池化来计算通道注意力,在非常低的计算成本下达到了提升网络性能的目的,遗憾的是,SE模块忽视了捕获位置信息的注意力;CBAM模块通过使用大尺寸卷积来获得位置信息的注意力,但只偏向于捕获局部的位置信息。 CAM模块来源于2021CVPR,该模块通过将位置信息嵌入到通道注意力中,因为其较少的计算代价,使轻量级网可以较大的区域中获得注意力。为了缓解位置信息丢失的问题,论文作者将2D全局池化替换成分别在特征的w和h并行提取特征的两个1D池化,可以有效捕获空间坐标信息;而后这两个并行的特征图通过两个卷积来生成两个独立方向的注意力图;通过将两个注意力图乘入到原始特征图中,以达到增强特征图的表征能力。

代码建立包含CAM代码的attention.py

在./yolox/models/文件夹下建立attention.py,CAM代码如下。相较于官方的代码,为了适配yolox,这里将nn.AdaptiveAvgPool2d直接用于forward。

class CAM(nn.Module): def __init__(self, channels, reduction=32): super(CAM, self).__init__() self.conv_1x1 = nn.Conv2d(in_channels=channels, out_channels=channels // reduction, kernel_size=1, stride=1, bias=False) self.mish = Mish() # 可用自行选择激活函数 self.bn = nn.BatchNorm2d(channels // reduction) self.F_h = nn.Conv2d(in_channels=channels // reduction, out_channels=channels, kernel_size=1, stride=1, bias=False) self.F_w = nn.Conv2d(in_channels=channels // reduction, out_channels=channels, kernel_size=1, stride=1, bias=False) self.sigmoid_h = nn.Sigmoid() self.sigmoid_w = nn.Sigmoid() def forward(self, x): h, w = x.shape[2], x.shape[3] avg_pool_x = nn.AdaptiveAvgPool2d((h, 1)) avg_pool_y = nn.AdaptiveAvgPool2d((1, w)) x_h = avg_pool_x(x).permute(0, 1, 3, 2) x_w = avg_pool_y(x) x_cat_conv_relu = self.mish(self.conv_1x1(torch.cat((x_h, x_w), 3))) x_cat_conv_split_h, x_cat_conv_split_w = x_cat_conv_relu.split([h, w], 3) s_h = self.sigmoid_h(self.F_h(x_cat_conv_split_h.permute(0, 1, 3, 2))) s_w = self.sigmoid_w(self.F_w(x_cat_conv_split_w)) out = x * s_h.expand_as(x) * s_w.expand_as(x) return out在yolo_pafpn.py中添加CAM

CAM作为即插即用的注意力模块,添加位置可以完全替换例如CBAM等经典的注意力机制模块,具体可参考其他有关yolox在head中插入注意力机制的教程,这里给的代码以添加在pafpn为例,添加在哪效果好要取决于添加位置在特定数据集的表现。

#!/usr/bin/env python# -*- encoding: utf-8 -*-# Copyright (c) Megvii Inc. All rights reserved.import torchimport torch.nn as nnfrom .darknet import CSPDarknetfrom .network_blocks import BaseConv, CSPLayer, DWConvfrom .attention import CAMclass YOLOPAFPN(nn.Module): """ YOLOv3 model. Darknet 53 is the default backbone of this model. """ def __init__( self, depth=1.0, width=1.0, in_features=("dark3", "dark4", "dark5"), in_channels=[256, 512, 1024], depthwise=False, act="silu", ): super().__init__() self.backbone = CSPDarknet(depth, width, depthwise=depthwise, act=act) self.in_features = in_features self.in_channels = in_channels Conv = DWConv if depthwise else BaseConv self.upsample = nn.Upsample(scale_factor=2, mode="nearest") # self.upsample = nn.Upsample(scale_factor=2, mode="bilinear") self.lateral_conv0 = BaseConv( int(in_channels[2] * width), int(in_channels[1] * width), 1, 1, act=act ) self.C3_p4 = CSPLayer( int(2 * in_channels[1] * width), int(in_channels[1] * width), round(3 * depth), False, depthwise=depthwise, act=act, ) # cat self.reduce_conv1 = BaseConv( int(in_channels[1] * width), int(in_channels[0] * width), 1, 1, act=act ) self.C3_p3 = CSPLayer( int(2 * in_channels[0] * width), int(in_channels[0] * width), round(3 * depth), False, depthwise=depthwise, act=act, ) # bottom-up conv self.bu_conv2 = Conv( int(in_channels[0] * width), int(in_channels[0] * width), 3, 2, act=act ) self.C3_n3 = CSPLayer( int(2 * in_channels[0] * width), int(in_channels[1] * width), round(3 * depth), False, depthwise=depthwise, act=act, ) # bottom-up conv self.bu_conv1 = Conv( int(in_channels[1] * width), int(in_channels[1] * width), 3, 2, act=act ) self.C3_n4 = CSPLayer( int(2 * in_channels[1] * width), int(in_channels[2] * width), round(3 * depth), False, depthwise=depthwise, act=act, ) self.CAM0 = CAM(int(in_channels[2] * width)) self.CAM1 = CAM(int(in_channels[1] * width)) self.CAM2 = CAM(int(in_channels[0] * width)) # self.CAM3 = CAM(int(in_channels[0] * width)) # self.CAM4 = CAM(int(in_channels[1] * width)) # self.CAM5 = CAM(int(in_channels[2] * width)) def forward(self, input): """ Args: inputs: input images. Returns: Tuple[Tensor]: FPN feature. """ # backbone out_features = self.backbone(input) features = [out_features[f] for f in self.in_features] [x2, x1, x0] = features #############add CAM############## x0 = self.CAM0(x0) x1 = self.CAM1(x1) x2 = self.CAM2(x2) ################################## fpn_out0 = self.lateral_conv0(x0) # 1024->512/32 f_out0 = self.upsample(fpn_out0) # 512/16 f_out0 = torch.cat([f_out0, x1], 1) # 512->1024/16 f_out0 = self.C3_p4(f_out0) # 1024->512/16 fpn_out1 = self.reduce_conv1(f_out0) # 512->256/16 f_out1 = self.upsample(fpn_out1) # 256/8 f_out1 = torch.cat([f_out1, x2], 1) # 256->512/8 pan_out2 = self.C3_p3(f_out1) # 512->256/8 # pan_out2 = self.CAM3(pan_out2) p_out1 = self.bu_conv2(pan_out2) # 256->256/16 p_out1 = torch.cat([p_out1, fpn_out1], 1) # 256->512/16 pan_out1 = self.C3_n3(p_out1) # 512->512/16 # p_out1 = self.CAM4(p_out1) p_out0 = self.bu_conv1(pan_out1) # 512->512/32 p_out0 = torch.cat([p_out0, fpn_out0], 1) # 512->1024/32 pan_out0 = self.C3_n4(p_out0) # 1024->1024/32 # pan_out0 = self.CAM5(pan_out0) outputs = (pan_out2, pan_out1, pan_out0) return outputs总结

CAM,同SE、CBAM等模块一样,作为即插即用的注意力机制,在yolov5、yolox等轻量级网络中有着重要的作用。本文介绍的CAM+yolox在我的数据集上,mAP比不添加的时候提高了0.02个点,相比使用CBAM提高了0.01个点,效果还是很可观的。

本文链接地址:https://www.jiuchutong.com/zhishi/297518.html 转载请保留说明!

上一篇:前端使用lottie-web,使用AE导出的JSON动画贴心教程(前端使用vue)

下一篇:下载、编译、安装、使用 vue-devtools(编译安装和普通安装)

  • 个税里的工资薪金
  • 住宿报销是开普票还是专票
  • 出口酒类产品需要什么
  • 怎么设置存货科目
  • 施工企业预算怎么编制
  • 存货跌价准备转销会影响当期损益吗
  • 贴现法付息什么意思
  • 购买东西进项税在借方还是贷方
  • 计提的利息汇算清缴前没发放,需要交企业所得税吗
  • 研发准备金的计提比例是多少
  • 互联网合同要交社保吗
  • 注册资本没有缴足前贷款利息
  • 认证后的发票可以留存多久
  • 房地产开发经营属于什么行业类别
  • 残保金补报
  • 记帐凭证怎么制作的
  • 开票系统维护费必须要交吗
  • 什么样的发票需要交税
  • 委托代付工程款会计分录
  • 高新企业认定 研发委外费用
  • bios密码如何设置
  • 收到对方投资款怎么做会计凭证
  • 购买加油卡怎么充值
  • 备用金包括哪些大类
  • 发出商品借方余额120000元
  • windows11邮件
  • 快捷方式都变成pdf
  • 销售方运输发票怎么做账
  • 一个php请求的执行过程
  • 装修未办理施工许可证怎么处罚
  • laravel基础
  • 缴纳住房公积金现金流量项目填什么
  • laravel访问路由方式
  • 财务费用的核算属于什么业务
  • css width height
  • 把ChatGPT接入我的个人网站
  • html入门基础
  • vue模块拖拽
  • 资产支出加权平均数例题
  • 金融企业会计科目有哪些
  • 对公账号可以绑定微信提现吗
  • 医疗机构收据
  • 企业季度是如何对账
  • 合并资产负债表图片
  • 无形资产摊销怎么计算
  • 烟叶税的计税依据如何确定
  • 企业所得税法开办费
  • 旅游发票可以做差旅费吗
  • 投资公司的投资收益算主营业务收入吗
  • 业务招待费可以进项抵扣吗
  • 增值税涉及的税目有哪些
  • 税务局代开的增值税专票可以红冲吗?
  • 转回坏账准备影响营业利润吗
  • 资产负债表的期末数是指什么
  • 退资本金现金流量表走哪一项
  • 农民工工资专户销户流程
  • 对公账户提取备用金怎么做账
  • 应收账款转让会计分录 未实际收到对价
  • WIN10系统怎么删除3Dmax
  • win10预览版和正式版区别
  • cpqa1000.exe是安全进程吗 cpqa1000进程有什么作用
  • linux如何使用gcc编程
  • win10系统经常弹出广告页面怎么解决
  • win7如何禁用网卡
  • cocos2d动画
  • unity小技巧
  • android自定义样式
  • shell 数组操作
  • nginx与php
  • 终于实现的图片
  • 又一枚精彩的弹幕效果jQuery实现
  • 总公司与分公司的法律责任
  • 江苏电子税务局电话
  • 重庆国税税务局官网
  • 党建与内控合规风险防范相融合
  • 自助办税服务厅怎么用
  • 从国外寄电吉他要多少钱
  • 小微企业所得税5%优惠政策
  • 发票验旧后还能开票吗
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设