位置: IT常识 - 正文

占有统治地位的Transformer究竟是什么(占统治地位的英文短语)

编辑:rootadmin
占有统治地位的Transformer究竟是什么

推荐整理分享占有统治地位的Transformer究竟是什么(占统治地位的英文短语),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:占统治地位的阶级,占统治地位的的英文单词,占统治地位的经济,占有统治地位的人,占统治地位的英文短语,占有统治地位的人,占有统治地位的人,占有统治地位的人,内容如对您有帮助,希望把文章链接给更多的朋友!

讲个有趣的小故事

我高二那年从乙班考入了甲班,对于那时的我 偏科英语最高只有108+班级平均英语成绩125+暴躁难为人女英语老师,使我上英语课时战战兢兢。英语老师很时尚,喜欢搞花里胡哨的词语让我们放松,也很尊重我虽然暴躁但维护着我的面子不让我出丑。

当时正逢《变形金刚》电影上映,我在电影院的海报里刚好看到了Transformer这个单词。周几的一天英语课,老师提问完我Transform这个词后问我知不知道Transformer什么意思,语气中带着平淡,似乎这是一个很平常的词,我应该会。班里鸦雀无声,知道老师开始"难为我这个新生(开玩笑)"了。

于是我扑通着心跳,以沉默的语气说出了"变形金刚",似乎就是一个很平常的词。那时我不但余光瞥见了老师的惊讶眼神,耳边还想起了同学们的"哇~"。

这也是为什么我选用这个封面。那是老师唯一一次考验我,她似乎看到了我的努力,我也没有辜负她的期待。

回归正题

本文分成两个部分,前半部分我会以白话文(个人理解)的方式尽可能通俗易懂地将transformer介绍清楚,你只需要有一点CNN、RNN和一点文本处理的基础即可;后半部分我会以以前写AI遮天传的方式再把整体架构过一遍。学完这些再去做“transformer 实现看图说话”项目就显得很轻松啦。

文章内容较多,建议收藏。

一、Transformer是什么

我们以前学习过CNN、RNN以及它们的变种,像是VGG、Resnet、LSTM、GRU等等,都是神经网络模型,主要的工作就是在深度学习领域的“特征工程”中进行特征提取。

我们以CNN为例,回忆之前所学简单CNN模型的特点:卷积、池化、全连接,这些操作都是为了能够更好地将图片的特征提取出来:不同卷积层代表着不同感受野下提取不同的特征,同一层不同feature map又代表着该层不同方面的特征;哪怕是加上激活函数也是为了使得结果不断地向非线性(使直线弯折更加灵活)转化。通过反向计算不断地更新卷积核、全连接层等的参数,对比提高accuracy降低loss,得到最优秀的权重,来完成特征提取(重要的特征权重大)。

RNN同样有着自己的工作方式。在Transformer创作之初,它用来解决机器翻译(自然语言处理)方向“RNN无法并行计算”、“即使使用了GRU或者LSTM,RNN仍然需要注意力机制提供对于任意状态的访问”等问题,来自于论文“Attention is all you need”,于2017年在自然语言处理方向大火,2020年应用在计算机视觉方向后效果卓越,后续的bert、detr乃至如今爆火的chatGPT模型,都是基于Transformer来实现的。

所以,简单来说,transformer是一种近些年来非常优秀的网络模型、特征提取器(CV)、序列到序列(NLP)的转换器。

二、传统方法的问题

前面所说,它创作之初用来解决机器翻译(自然语言处理)中,RNN无法并行计算等问题。其基本组成依旧是传统机器翻译模型中常见的seq2seq网络,即序列到序列,所以会有编码器和解码器两个框架。

补充:许多NLP任务可以表述为序列到序列,再简单来说就是向量到向量:

机器翻译 (法语 → 英语)

总结 (长文本 → 短文本)

对话 (先前的话语 → 接下来的话语)

代码生成 (自然语言 → Python 代码)

旋律产生 (一个乐句 → 下一个乐句)

语音识别 (声音 → 文本)

回顾传统RNN,将其展开,它的下一个输入需要上一时刻的输出:

而transformer通过矩阵运算的形式完成了并行计算,这个后面会讲到。

此外,传统的word2vec也存在如“无法区分不同语境中同一个词的表达”,“训练好的向量就永久不变”这样的问题

而transformer通过前后文“注意力机制”来完成区分不同语境中同一个词的表达,(有一点点像n-gram,但本质不同,n-gram是滑动窗口部分,RNN变种是用门控开关来一个个设置词的权重,在我看来注意力机制是整体地观察上下文然后提取主干部分。后面会讲到。)

三、Attention、self-attention、multi-headed attention

即注意力、自注意力、多头注意力。

3.1 这里的注意力指的是什么

比如这里这句话:“小明今天开心地踢了一个绿色的皮球”,这句话的关键词/重要的部分是 "小明踢球",其他的次要,次次要。我们把注意力放在这些重要的上面,即分配一些权重。

这是在语言中,图片中也是一样的,比如猫狗识别,我记得猫有胡须而狗没有,可以把注意力放在胡须上。又或者说图片有前景和背景,我们应该把注意力放在更重要的前景里。

这样,我们人类下意识地提取出了"小明踢球" 和 猫狗识别时忽略背景、区分猫狗特征来完成识别,就叫做注意力。当然本质上还是权重的不同,不过本次引入了一种新的做法:自注意力。

3.2 self-attention是什么

顾名思义自注意力,自己注意自己这句话,以下面这句话为例:

The animal didn't cross the street because it was too tired.

The animal didn't cross the street because it was too narrow.

首先看第一句话,这个动物没有穿过街道因为它太累了。因此在进行动物这个词的计算的时候,动物没穿过街道因为累作为句子主体部分要被分予的注意力(权重)更大些。更精简一些则是动物累了,显然计算animal时animal和tired更加"引人注意"。

同理,动物没有穿过街道因为它太窄了,这里说的是街道窄,因此计算animal时更注意animal、street、narrow,计算street时更注意street、narrow。

我们观察上面这张图,我们不提计算动物、街道、累这几个词的时候,但看it这个词,在动物没有穿过街道因为它太累了这句话里it指的是动物,因此训练的效果应该是 The animal 对于it的注意力更大,颜色更深。

这里谁对于谁关乎到后面所学Q、K、V中Q*K这步操作,后面会介绍到。

一般到第五层的时候,单词就开始有根据地关注其他词。

3.3 self-attention如何计算

计算来了!不过放心这里先不写公式,依旧是白话文!

上图 以输入一句话(这里两个词)为例,Thinking和Machine,经过embedding后得到两个低维词向量X1, X2,接下来就要开始了:

此时出现 三个矩阵,我们先不管它是怎么来的(当然有W了那就证明是权重矩阵,既然是权重那就一开始初始化然后训练更新。) X1,X2分别与 三个矩阵相乘,得到各自的q1、k1、v1和q2、k2、v2向量。当然放在一起就是矩阵乘以矩阵等于矩阵了。

其中

Q:query,要去查询的

K:key,要被查询的

V:value,这个词的含义即实际特征

Q和K一起看,然后谈V

接下来,矩阵Q与矩阵K点乘,分开来看就是向量q1分别乘以k1,k2,k3... 向量q2分别乘以k1,k2,k3... ,放在一起不就是矩阵相乘吗。

至于Q*K的含义,可以这样理解,下图左侧各词分别是q1、q2...,右边是k1、k2...

不过就是单词->embedding->乘以一个 矩阵,一个放在左边一个放在右边,每个单词相互之间进行计算嘛。

以上方Thinking和Machine为例的话,计算Thinking就是q1·k1, q1·k2

如果这里q1和k1有关系的话那两个向量就接近于平行内积大,无关则是垂直向量点乘为0.

计算完之后,接下来要经过一次softmax计算,再与矩阵V相乘。因为V是该词的特征含义,至少要把各自的v放进去才有实际含义。

即softmax(/根号下维度 ) · 得到结果

上面Q·K完成了各词之间的”评分“,用softmax归一化一下,得到的都是0.几的影响度(放在以前就是概率了),乘以V,得到结果Z。

至于除以根号下维度则是因为随着矩阵维度增加结果也会变大。这步叫Scaled Dot-Product Attention

这样同一词上下文不同注意力也会不同,表达的意思也会不同。

同时矩阵的运算也是并行的,不同词之间直接计算,无论是X·W还是Q·K又或是后面的计算。

3.4 multi-headed机制

多头注意力,也有叫多重注意力,即很多组不同的注意力。

我们上面最开始说到X和 相乘得到Q、K、V矩阵,实际上这个 可以有多组,得到多组不同的Q、K、V矩阵,以得到很组不同的结果,这便是多头注意力机制。就像特征图一样。

我们得到了不同的结果Z0 Z1 Z2 Z3... 一般有8个

将它们拼接在一起concat,进行一次全连接来降维得到最后的输出结果Z

不同的头结果往往是不同的:

3.5 局部模型观察1

下面便是Transformer模型的结构,左侧是编码器encoder和解码器decoder。

此时我们已经了解了muti-head attention

多组Q、K、V输入,softmax(/根号下维度 ) · 得到多个结果,拼在一起(Concat)进行一次全连接(Linear)降维 。

占有统治地位的Transformer究竟是什么(占统治地位的英文短语)

其中Scaled Dot-Product Attention是softmax那里进行的操作,字母h表示头的数量。

3.6 堆叠多层

一层不够用,那就加!

上图是向量输入 输出向量形式画的,我们依旧按矩阵来想,那就还和前面一样,多头注意力(上图是单个)我们得到多个z拼在一起全连接降维得到Z,接下来要经过Feed Forward Neural Network,得到矩阵R,这里的R就像一开始的X一样,当作输入去输入下一层的muti-head层里和 去运算。计算方法都是相同的。

即刚刚那样的事要再经历一次!

3.7 位置信息表达

在self-attention中每个词都会考虑整个序列的加权,所以其出现位置(先后顺序)并不会对结果产生什么影响,但是这跟实际就有些不符合了,我们希望模型能对位置有额外的认识。

此时,就有了位置编码 Positional Embedding

embedding后得到的X与位置矩阵T相加得到新的Positional Embedding的X。当然实际操作比这麻烦点,加入如正弦余弦函数这样的时钟周期函数,详情自行查阅。

3.8 Add与Normalize

层归一化和残差连接

层归一化

之前我们为例让数据、训练"可控"、别太跑偏,使用的是Batch Normalize,而这里使用的是Layer Normalize,区别如上图,即前者对于每个Batch,后者是对于每个数据。

残差连接

这是个老知识了,即这样不会使得训练效果变差,因为每次都加上了之前的x。

3.9 局部模型观察-Encoder

至此Encoder所需要的就都介绍完啦

两个子层

多头注意力层

2层的前馈网络

两个小技巧

残差链接

层归一化:将输入归一化为均值为0,方差为1

完整的编码器

每一层单元使用前一层的输出作为Q, K, V的输入

根据实验结果,组成单元的层数被设定为6

3.10 Decoder中的Masked Muti-Head Attention

与Encoder不同,Decoder中加入了Mask机制,不过Decoder也是输入一个序列输出一个序列。

前面介绍了Encoder中矩阵运算,而Decoder中的答案则是一个接着一个出的,以机器翻译为例,翻译出I am a student,除了要看前一种语言的序列以外,翻译到am时要考虑I,翻译到a的时候要考虑 I am...

因此,在不断地输入的时候,并不能像Encoder一样X直接放进去,而是需要加入Mask机制,即翻译到a的时候要考虑 I am,而student此时还没有翻译出来,要用掩码给它掩盖掉。这样Embedding、Embedding with time signal时都看不到,输入进去的时候也”不知道“了。

Masked Muti-Head Attention它最终只输出一个Q,与Encoder中的K, V放在一起作为输入传递给Decoder中的Muti-Head Attention进行预测,得到最终最终的结果。

损失函数使用cross-entropy即可

3.11 整体网络架构梳理和其它技巧

架构:编码器-解码器

输入:字节对编码 + 位置编码

模型:多层编码/解码模型单元的堆叠

输出:下个单词的概率

损失函数:在softmax层之后使用标准的交叉熵损失函数

架构:编码器-解码器

输入:输入=字节对编码 + 位置编码

模型:多层编码/解码模型单元的堆叠

其中,Masked Muti-Head Attention它最终只输出一个Q,与Encoder中的K, V放在一起作为输入传递给Decoder中的Muti-Head Attention进行预测。

输出:下个单词的概率

损失函数:在softmax层之后使用标准的交叉熵损失函数

其他技巧

检查点平均

ADAM优化器

在训练时,加上每一层的残差前使用dropout

标签平滑

带有束搜索和长度惩罚的自回归解码

3.12 补充:字节编码和位置编码

Input = BPE + PE 字节对编码+位置编码

字节对编码(Byte Pair Encoding, BPE)

不是对词进行编码,而是将词分割成更小的单元进行编码。

一种单词分割算法

从所有字母组成的单词表开始

将频率最高的n-gram变成新的词表单词

字节对编码 (Byte Pair Encoding, BPE)

将出现次数少和未见过的单词编码成子词单元 (subword units) 的序列,解决未登录词 (out of vocabulary, OOV) 的问题

在上面的例子中,未登录词 “best” 将会被切割成 “b est”。这样便将之前未见过的单词转化为相应的子词单元

位置编码 (Positional encoding, PE)

设字节对编码维度为d,接下来在字节编码中加入位置编码

Transformer的组成单元对于在不同位置的的相同单词不敏感

加入位置编码后,在不同位置的相同单词会有不同表示

𝑖 是embedding的索引, 取值范围是 0 到 d/2

Input = BPE + PE

位置编码可视化

上图可见每一行相当于一个position即第几个位置,每一列相当于embedding的维度。这是偶数位和奇数位的位置编码。

一个位置编码的例子,上图包含了20个单词(每一行)和512维向量长度(每一列)。可以发现图中PE的。

取值好像从中间分开了。这是因为这个图中的左边的值是由sin函数生成的,右边的值是由cos生成 的,这两个函数生成的值之后被拼接起来形成了最终的位置编码。

四、总结

机器翻译结果:

Transformer是一个高效的模型,在NLP的很多任务中非常有效

证明了注意力机制的有效性

为最新NLP的前沿进展 (如BERT和XLNet) 提供了启示

然而,Transformer框架不容易优化,对于参数修改比较敏感

本文链接地址:https://www.jiuchutong.com/zhishi/297607.html 转载请保留说明!

上一篇:使用小程序实现AI动漫脸特效(使用小程序实现im)

下一篇:vue实现购物车功能(vue写的购物车详细步骤)

  • 内容营销VS社会化媒体营销,到底有啥区别?(内容营销与传统营销)

    内容营销VS社会化媒体营销,到底有啥区别?(内容营销与传统营销)

  • 爱奇艺一起看功能在哪(爱奇艺一起看功能怎么没有了)

    爱奇艺一起看功能在哪(爱奇艺一起看功能怎么没有了)

  • 微信群发消息怎么看出来对方已删除(微信群发消息怎么弄)

    微信群发消息怎么看出来对方已删除(微信群发消息怎么弄)

  • 苹果电脑的摄像头在哪里打开(苹果电脑的摄像头打不开是怎么回事)

    苹果电脑的摄像头在哪里打开(苹果电脑的摄像头打不开是怎么回事)

  • 小米8屏幕指纹版拆后盖教程(小米8屏幕指纹版换电池教程视频)

    小米8屏幕指纹版拆后盖教程(小米8屏幕指纹版换电池教程视频)

  • 为什么qq匹配聊天不能匹配了(为什么qq匹配聊天没反应)

    为什么qq匹配聊天不能匹配了(为什么qq匹配聊天没反应)

  • 快手看不到粉丝团标志(快手看不到粉丝团等级)

    快手看不到粉丝团标志(快手看不到粉丝团等级)

  • 为什么打qq电话不能开游戏麦(为什么打qq电话会黑屏)

    为什么打qq电话不能开游戏麦(为什么打qq电话会黑屏)

  • vivox23和x27区别(vivox23和x27有多大区别)

    vivox23和x27区别(vivox23和x27有多大区别)

  • 电脑横屏怎么弄回来快捷键(电脑横屏怎么弄也弄不回去 该怎么办)

    电脑横屏怎么弄回来快捷键(电脑横屏怎么弄也弄不回去 该怎么办)

  • word如何编辑背景图片(怎么在word里弄背景)

    word如何编辑背景图片(怎么在word里弄背景)

  • 京东怎么隐藏待收货(京东怎么隐藏待付款订单)

    京东怎么隐藏待收货(京东怎么隐藏待付款订单)

  • wps表格怎么批量删除(wps表格怎么批量添加文字)

    wps表格怎么批量删除(wps表格怎么批量添加文字)

  • 荣耀20s性能模式怎么开(荣耀20pro开性能模式)

    荣耀20s性能模式怎么开(荣耀20pro开性能模式)

  • 微信缩略图可不可以删除(微信缩略图可不可以恢复)

    微信缩略图可不可以删除(微信缩略图可不可以恢复)

  • 苹果电池寿命77%怎么办(苹果电池寿命77%会有危险吗)

    苹果电池寿命77%怎么办(苹果电池寿命77%会有危险吗)

  • 京东下单后怎么取消订单(京东下单后怎么更改地址收货地址)

    京东下单后怎么取消订单(京东下单后怎么更改地址收货地址)

  • ps给人像局部补光(ps给人像局部补色)

    ps给人像局部补光(ps给人像局部补色)

  • vivoiqooneo支不支持nfc(vivoiqooneo支不支持无线充电)

    vivoiqooneo支不支持nfc(vivoiqooneo支不支持无线充电)

  • 苹果x手机屏幕出现一条绿线(苹果x手机屏幕失灵解决方法)

    苹果x手机屏幕出现一条绿线(苹果x手机屏幕失灵解决方法)

  • 快手怎样设置不让别人评论(快手怎样设置不看某人的作品)

    快手怎样设置不让别人评论(快手怎样设置不看某人的作品)

  • 最小的固态硬盘是什么(最小的固态硬盘多大尺寸)

    最小的固态硬盘是什么(最小的固态硬盘多大尺寸)

  • 个税必须每个人交吗
  • 偷税漏税是指什么税种
  • 个税计算方法和规定
  • 房屋出租收入会计分录
  • 单一窗口报关单
  • 劳务工资入什么科目
  • 处置固定资产需要税务局备案吗
  • 农业企业增值税纳税实务实训心得
  • 个体户没有税务登记证能注销营业执照吗
  • 营改增后不动产销售增值税 5%还是9%
  • 房产过户的相关问题
  • 进项税额转出是不可以抵扣吗
  • 委托加工物资的账务处理例题
  • 跨地区经营怎么交税
  • 没有发票的管理费用汇算清缴的时候怎么调出来
  • 水利申报怎么申报
  • 计提生产经营
  • 广告喷绘增值税怎么算
  • 淘宝的电子发票怎么看
  • 单位租房水电费是个人名字是否可以抵扣
  • 所得税费用一年交几次
  • 购入增值税税控系统专用设备为什么全额计入固定资产
  • 高新企业的研究方向
  • 退税发票勾选后开红冲发票怎么申报
  • 工会筹备金怎么报
  • 电子商务企业类别有哪些
  • 工会经费缴纳比例是哪里规定的
  • 打开网页提示打开别的应用
  • 建筑公司可以开劳务吗
  • 公司旅游费用怎么入账
  • windows 11预览版
  • php删除数组中的某个值
  • Win11/Win10 21H2 正式版发布前,微软再次推送可靠性补丁更新 KB4023057
  • php parse_url
  • 计提五险一金的分录怎么写
  • 质量扣款入什么科目
  • uniapp自定义下拉刷新上拉加载
  • 政府奖励怎么做账
  • php连接mysql数据库的几种方式及区别
  • nvidia显卡驱动怎么安装
  • Realsense D455/435内参标定以及手眼标定
  • 工商年报中营业费用包括
  • 第二季度所得税怎么算
  • JavaScript charCodeAt() 方法
  • 轻量级网络设计
  • 企业其他应付款余额非常大的原因
  • 选择mysql数据库为当前数据库
  • 微信发放红包如何退回去
  • 发行股份的原则
  • 企业招待客户收入怎么算
  • 电商平台收入何时到账
  • 预收租金发票怎么开
  • 高危险工作人员有什么意外险
  • 居民企业只就其境内全部所得纳税
  • 零余额帐户如何转出
  • 交车辆购置税需要什么材料
  • 房地产开发企业资质管理规定
  • 客户用个人账户转4s店开公司的机动车发票
  • 小规模纳税人发票可以抵扣吗
  • 银行结算账户的基本要求
  • 对公账户提取备用金怎么做账
  • 加盟创业成功案例分析
  • 备查账目
  • 商业企业购入商品
  • mac安装mysql没看见初期密码
  • 电脑打开win
  • win10系统怎么修改用户名称
  • .ccc是什么文件
  • ios8.4.1完美越狱教程
  • 电脑用户名怎么改
  • winxp0000007b修复
  • 修改windows server2012服务器密码
  • linux分区类型默认的是什么
  • 行为怪异的人有问题吗
  • nodejs详解
  • jquery操作元素样式
  • js == ===区别
  • js中checked什么意思啊
  • javascript基于什么的语言
  • js闭包的用处
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设