位置: IT常识 - 正文

YOLOv5~目标检测模型精确度(yolov5目标检测流程图)

编辑:rootadmin
YOLOv5~目标检测模型精确度

推荐整理分享YOLOv5~目标检测模型精确度(yolov5目标检测流程图),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov5目标检测论文,yolov5目标检测算法,yolov5目标检测论文,yolov5目标检测步骤流程图,yolov5目标检测论文,yolov5目标检测算法原理,yolov5目标检测步骤流程图,yolov5目标检测步骤流程图,内容如对您有帮助,希望把文章链接给更多的朋友!

还是yolo5的基础啊~~ 一些关于目标检测模型的评估指标:IOU、TP&FP&FN&TN、mAP等,并列举了目标检测中的mAP计算。

指标评估(重要的一些定义)

IOU

 也称重叠度表示计算预测回归框和真实回归框的交并比,计算公式如下: 

TP&FP&FN&TN

 

指标的一些基本概念:

TP(True Postives):分类器把正例正确的分类-预测为正例。(IOU >=  阈值)

FN(False Negatives):分类器把正例错误的分类-预测为负例。(IOU <  阈值)

FP(False Postives):分类器把负例错误的分类-预测为正例

TN(True Negatives):分类器把负例正确的分类-预测为负例(_yolov5中没有应用到_)

yolov5中没有应用TN的原因: TN代表的是所有可能的未正确检测到的边界框。然而在yolo在目标检测任务中,每个网格会生成很多的预测边界框,有许多的预测边界框是没有相应的真实标签框,导致未正确检测到的边界框数量远远大于正确检测到的边界框,这就是为什么不使用TN的原因。

threshold:  depending on the metric, it is usually set to 50%, 75% or 95%.

PrecisionYOLOv5~目标检测模型精确度(yolov5目标检测流程图)

Precision 定义:模型识别相关目标的能力。分类正确的样本在所有样本中的数量比例,公式如下:

 

Recall

Recall 定义:是模型找到真实回归框(即标签标注的框)的能力。计算公式如下:

mAP

多标签图像分类任务中图片的标签不止一个,因此评价不能用普通单标签图像分类的标准,即mean accuracy,该任务采用的是和信息检索中类似的方法—mAP,虽然其字面意思和mean average precision看起来差不多,但是计算方法要繁琐得多,mAP 会统计所有 Confidence 值下的 PR值,而实际使用时,会设定一个 Confidence 阈值,低于该阈值的目标会被丢弃,这部分目标在统计 mAP 时也会有一定的贡献。

Confidence(置信度):在统计学中,一个概率样本的置信区间(Confidence interval)是对这个样本的某个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度。置信区间给出的是被测量参数测量值的可信程度范围,即前面所要求的“一定概率”。这个概率也被称为置信水平。

(红色曲线代表,人为的方式将PR曲线变成单调递减,使得计算面积更容易。) 

AP(Average Percision):AP为平均精度,指的是所有图片内的具体某一类的PR曲线下的面积(横轴为Recall,纵轴为Precision)。

AP衡量的是对一个类检测好坏,mAP就是对多个类的检测好坏。在多类多目标检测中,计算出每个类别的AP后,再除于类别总数,即所有类别AP的平均值,比如有两类,类A的AP值是0.5,类B的AP值是0.2,那么 =(0.5+0.2)/2=0.35。

MAP: 是指所有图片内的所有类别的AP的平均值,map越高代表模型预测精度值越高。

目标检测中的mAP计算

yolov5计算IOU源码解析

源代码地址:https://github.com/Oneflow-Inc/one-yolov5/blob/main/utils/metrics.py#L224-L261

# 计算两框的特定iou (DIou, DIou, CIou)   def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):      # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)      # Get the coordinates of bounding boxes 下面条件语句作用是:进行坐标转换从而获取yolo格式边界框的坐标      if xywh:  # transform from xywh to xyxy          (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, 1), box2.chunk(4, 1)          w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2          b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_          b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_      else:  # x1, y1, x2, y2 = box1          b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, 1)          b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, 1)          w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1          w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1            # Intersection area 获取两个框相交的面积。      """      left_line = max(b1_x1, b2_x1)      reft_line = min(b1_x2, b2_x2)      top_line = max(b1_y1, b2_y1)      bottom_line = min(b1_y2, b2_y2)      intersect = (reight_line - left_line) * (bottom_line - top_line)      """      inter = (flow.min(b1_x2, b2_x2) - flow.max(b1_x1, b2_x1)).clamp(0) * \              (flow.min(b1_y2, b2_y2) - flow.max(b1_y1, b2_y1)).clamp(0)            # Union Area  两个框并到面积      union = w1 * h1 + w2 * h2 - inter + eps            # IoU       iou = inter / union      if CIoU or DIoU or GIoU:          cw = flow.max(b1_x2, b2_x2) - flow.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width          ch = flow.max(b1_y2, b2_y2) - flow.min(b1_y1, b2_y1)  # convex height          if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1              c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared              rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2              if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pyflow.blob/master/utils/box/box_utils.py#L47                  v = (4 / math.pi ** 2) * flow.pow(flow.atan(w2 / (h2 + eps)) - flow.atan(w1 / (h1 + eps)), 2)                  with flow.no_grad():                      alpha = v / (v - iou + (1 + eps))                  return iou - (rho2 / c2 + v * alpha)  # CIoU              return iou - rho2 / c2  # DIoU          c_area = cw * ch + eps  # convex area          return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf      return iou  # IoU  yolov5计算AP源码逐行解析

源代码地址:

https://github.com/Oneflow-Inc/one-yolov5/blob/main/utils/metrics.py#L96-L121

# 根据PR曲线计算AP   def compute_ap(recall, precision):      """ Compute the average precision, given the recall and precision curves      # Arguments          recall:    The recall curve (list)          precision: The precision curve (list)      # Returns          Average precision, precision curve, recall curve      """      # Append sentinel values to beginning and end 将开区间给补上,补成闭合的区间。      mrec = np.concatenate(([0.0], recall, [1.0]))       mpre = np.concatenate(([1.0], precision, [0.0]))            # Compute the precision envelope       """      人为的把PR曲线变成单调递减的,例如:      np.maximum(accumulate(np.array([21, 23, 18, 19, 20, 13, 12, 11]) ) => np.array([23, 23, 20, 20, 20, 13, 12, 11])      """      mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))            # Integrate area under curve      method = 'interp'  # methods: 'continuous', 'interp'      if method == 'interp': # 默认采用 interpolated-precision 曲线,          x = np.linspace(0, 1, 101)  # 101-point interp (COCO)          ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate      else:  # 'continuous'          i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x axis (recall) changes          ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve            return ap, mpre, mrec  

whaosoft aiot  http://143ai.com 

本文链接地址:https://www.jiuchutong.com/zhishi/297652.html 转载请保留说明!

上一篇:保姆级人工智能学习成长路径(人工智能机器人保姆什么时候实现)

下一篇:进阶版JavaScript学习【第二期】(宋大叔教音乐第三单元进阶版)

  • 个体工商户免费刻章
  • 个人境外汇款有限制吗知乎
  • 利润表季报本月金额是本季度余额吗
  • 自然人税收系统怎么添加人员
  • 银行承兑汇票手续费是多少
  • 外地建筑工程开票流程
  • 资产减值损失借贷方向
  • 境内a上市公司非限售股股票转让所得怎么交个人所得税
  • 持有至到期投资科目被取消了吗
  • 通行费电子增值税怎么算
  • 加建工程部分结算款如何做会计分录呢?
  • 领备用金时会计怎么做分录
  • 发票已认证未抵扣怎么办
  • 父母的股权给子女可以怎样认证
  • 一般纳税人注销需要多少钱
  • 收到供应商开具什么发票
  • 什么情况下一般疑问句用do
  • 地下建筑如何防潮
  • 视同销售行为销项税额该怎么核算
  • 母公司并购子公司需要股东会决议吗
  • 财产转让所得个人所得税纳税地点
  • 工程税金计入哪个账户
  • 未竣工验收已交付使用的工程还需安全监管吗
  • 企业所得税征收标准
  • 应付票据贴现息计入
  • scanexplicit.exe - scanexplicit是什么进程 作用是什么
  • AquariumDesktop.exe进程危险吗 AquariumDesktop是什么进程
  • 公司员工的社保怎么查询
  • PHP:mcrypt_ofb()的用法_Mcrypt函数
  • php 二维数组
  • PHP:imagepsencodefont()的用法_GD库图像处理函数
  • anaconda创建虚拟环境有什么用
  • 小规模纳税人超标认定一般纳税人
  • 投资中间人要担什么责任
  • vue display
  • 最强alpha什么意思
  • php加密zend
  • php7 数组
  • 前端等比例缩放
  • set命令用法
  • 没进项发票怎么办
  • 利润表中利息费用为负数是什么意思
  • 增值税的滞纳金税率
  • 帝国cms灵动标签排除上一篇下一篇文章
  • mongo mysql区别
  • 产品成本计算的分类法适用于( )
  • 劳务税能退税吗
  • 税金及附加是什么科目编号
  • 银行印鉴变更申请书范本
  • 置换房产流程
  • 固定资产发票怎么处理
  • 微信收款计入现金流量吗
  • 劳务发票成本怎么做账
  • 利润表中的营业收入怎么算出来的
  • win8键盘f1到f12取消按fn
  • 文件历史版本功能
  • 移动u盘的作用
  • mac怎么切换输入法
  • win7老是自动开机启动是怎么回事啊
  • Win7的sysprep工具怎么用 win7自带sysprep工具重置系统方法
  • linux操作系统b
  • redhat磁盘挂载
  • win7怎么删除操作中心
  • 微软为什么这么贵
  • Win10 Mobile 10586.164上手体验视频评测
  • linux 746
  • js调用音频文件
  • js小球与边框碰撞反弹
  • ExtJS4 组件化编程,动态加载,面向对象,Direct
  • 用jQuery的AJax实现异步访问、异步加载
  • python中读取文件
  • unity3d官方教程
  • 一款简单的网络版多媒体课件制作软件是什么
  • jquery弹出提示框
  • Python注释详解
  • 浙江电子税务局移动端
  • oecd国家是什么意思
  • 电子税务局财务制度备案在哪
  • 地税局开发票流程?
  • 北京朝阳区国税局时间
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设