位置: IT常识 - 正文
推荐整理分享路径规划 | 图解A*、Dijkstra、GBFS算法的异同(附C++/Python/Matlab仿真)(路径规划是什么意思),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:路径规划最新算法,路径规划最新算法,路径规划图片,路径规划教程,路径规划的基本流程和方法,路径规划的基本流程和方法,路径规划定义,路径规划是什么意思,内容如对您有帮助,希望把文章链接给更多的朋友!
🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。
🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法
搜索(Search)是指从初始状态(节点)出发寻找一组能达到目标的行动序列(或称问题的解)的过程。
在图搜索中,往往将环境简化为栅格地图(Grid Map),易于刻画固定场景,同时也便于计算机控制系统进行信息处理。所谓栅格就是将连续地图用固定大小正方形方格进行离散化的单位。
在栅格地图中,常见的邻域(neighbor)模式如下所示,即
8邻域24邻域48邻域栅格的邻域表示了从当前位置出发下一次搜索的集合,例如八邻域法中,当前栅格只能和周围的八个栅格相连形成局部路径。
下面是一个图搜索问题的例子,可以直观理解什么是搜索问题。
例1:在如下的栅格地图中,设绿色栅格为起点,红色栅格为终点,灰色栅格为障碍,白色栅格为可行点,问如何设计一条由栅格组成的连接起点、终点的路径,并尽可能使路径最短?
接下来,围绕这个问题展开阐述。
2 贪婪最佳优先搜索一个朴素的想法是:每一次搜索时就找那些与终点最近的节点,这里衡量最近可以用多种度量方式——曼哈顿距离、欧式距离等。这种方法像一头狼贪婪地望着食物,迫切寻求最近的路径,因此称为贪婪最佳优先搜索(Greedy Best First Search, GBFS)。
假设采用八邻域法,在GBFS思想指导下,在起点的八邻域中就会选择最右侧的节点,如下所示。
循环地,直到如下所示的节点,因为邻域内有障碍,这些障碍节点不会被候选,所以此时离终点最近的就是下方的方格
依次类推直至终点
3 Dijkstra算法Dijkstra算法走向了另一个极端,它完全不考虑扩展节点与终点的关系,而是定义了一个路径耗散函数g(n)g(n)g(n),从起点开始,机器人每走一个栅格就会产生一定的代价或耗散,因为Dijkstra算法希望路径最短,所以每次首选那些使路径耗散最小的节点。
依照Dijkstra算法的观点,从起点开始,其八个邻域节点都会被依次探索,因为它们离起点最近,接着再探索这些节点的子节点。
因此Dijkstra算法会遍历大量的节点,一圈圈地逼近终点
4 启发式A*搜索A*算法是非常有效且常用的路径规划算法之一,其是结合Dijsktra算法与GBFS各自优势的启发式搜索算法,其搜索代价评估函数为
f(n)=g(n)+h(n)f(n)=g(n)+h(n)f(n)=g(n)+h(n)
其中g(n)g(n)g(n)代表路径耗散,是Dijsktra算法分量;h(n)h(n)h(n)代表下一个搜索节点与终点的距离,启发式地引导机器人朝着终点拓展,是GBFS算法分量。
兼具两个算法特点的A*算法既保持完备性,又在一定条件下体现出最优性,被广泛应用于路径规划中。
5 A*、Dijkstra、GBFS算法的异同特别地
当g(n)=g\left( n \right) =0g(n)=0时,启发函数影响占据主导,A*算法退化为GBFS算法——完全不考虑状态空间本身的固有属性,不择手段地追求对目标的趋近,此时算法搜索效率将得到提升,但最优性无法保证;当h(n)=h(n)=0h(n)=0时,路径耗散函数影响占据主导,A*算法退化为Dijsktra算法——无先验信息搜索,此时算法搜索效率下降,但最优性上升。三个算法的直观比较如下所示
6 算法仿真与实现6.1 算法流程6.2 ROS C++实现核心代码如下
std::tuple<bool, std::vector<Node>> AStar::plan(const unsigned char* costs, const Node& start, const Node& goal, std::vector<Node> &expand) { // open list std::priority_queue<Node, std::vector<Node>, compare_cost> open_list; open_list.push(start); // closed list std::unordered_set<Node, NodeIdAsHash, compare_coordinates> closed_list; // expand list expand.clear(); expand.push_back(start); // get all possible motions const std::vector<Node> motion = getMotion(); // main loop while (!open_list.empty()) { // pop current node from open list Node current = open_list.top(); open_list.pop(); current.id = this->grid2Index(current.x, current.y); // current node do not exist in closed list if (closed_list.find(current) != closed_list.end()) continue; // goal found if (current==goal) { closed_list.insert(current); return {true, this->_convertClosedListToPath(closed_list, start, goal)}; } // explore neighbor of current node for (const auto& m : motion) { Node new_point = current + m; // current node do not exist in closed list if (closed_list.find(new_point) != closed_list.end()) continue; // explore a new node new_point.id = this->grid2Index(new_point.x, new_point.y); new_point.pid = current.id; // if using dijkstra implementation, do not consider heuristics cost if(!this->is_dijkstra_) new_point.h_cost = std::sqrt(std::pow(new_point.x - goal.x, 2) + std::pow(new_point.y - goal.y, 2)); // if using GBFS implementation, only consider heuristics cost if(this->is_gbfs_) new_point.cost = 0; // goal found if (new_point==goal) { open_list.push(new_point); break; } // bext node hit the boundary or obstacle if (new_point.id < 0 || new_point.id >= this->ns_ || costs[new_point.id] >= this->lethal_cost_ * this->factor_) continue; open_list.push(new_point); expand.push_back(new_point); } closed_list.insert(current); } return {false, {}}; }}6.3 Python实现核心代码如下
def plan(self): # OPEN set with priority and CLOSED set OPEN = [] heapq.heappush(OPEN, self.start) CLOSED = [] while OPEN: node = heapq.heappop(OPEN) # exists in CLOSED set if node in CLOSED: continue # goal found if node == self.goal: CLOSED.append(node) return self.extractPath(CLOSED), CLOSED for node_n in self.getNeighbor(node): # exists in CLOSED set if node_n in CLOSED: continue node_n.parent = node.current node_n.h = self.h(node_n, self.goal) # goal found if node_n == self.goal: heapq.heappush(OPEN, node_n) break # update OPEN set heapq.heappush(OPEN, node_n) CLOSED.append(node) return [], []6.4 Matlab实现核心代码如下
while ~isempty(OPEN(:, 1)) % pop f = OPEN(:, 3) + OPEN(:, 4); [~, index] = min(f); cur_node = OPEN(index, :); OPEN(index, :) = []; % exists in CLOSED set if loc_list(cur_node, CLOSED, [1, 2]) continue end % goal found if cur_node(1) == goal(1) && cur_node(2) == goal(2) CLOSED = [cur_node; CLOSED]; flag = true; cost = cur_node(3); break end % explore neighbors for i=1:neighbor_num node_n = [cur_node(1) + neighbor(i, 1), ... cur_node(2) + neighbor(i, 2), ... cur_node(3) + neighbor(i, 3), ... 0, cur_node(1), cur_node(2) ]; node_n(4) = h(node_n(1:2), goal); % exists in CLOSED set if loc_list(cur_node, CLOSED, [1, 2]) continue end % obstacle if map(node_n(1), node_n(2)) == 2 continue; end % goal found if cur_node(1) == goal(1) && cur_node(2) == goal(2) CLOSED = [cur_node; CLOSED]; flag = true; cost = cur_node(3); break end % update expand zone expand = [expand; node_n(1:2)]; % update OPEN set OPEN = [OPEN; node_n]; end CLOSED = [cur_node; CLOSED];end🔥 更多精彩专栏:
《ROS从入门到精通》《Pytorch深度学习实战》《机器学习强基计划》《运动规划实战精讲》…👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇
下一篇:前端发起请求,后端响应请求的整个过程(前端发起请求怎么设置)
友情链接: 武汉网站建设