位置: IT常识 - 正文

【通信原理】揭开傅里叶级数与傅里叶变换的神秘面纱(通信原理简明)

编辑:rootadmin
【通信原理】揭开傅里叶级数与傅里叶变换的神秘面纱

推荐整理分享【通信原理】揭开傅里叶级数与傅里叶变换的神秘面纱(通信原理简明),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:通信原理百度百科,通信原理百度百科,通信原理百度百科,通信原理速成,通信原理简明教程,通信原理速成,通信原理速成,通信原理简明教程,内容如对您有帮助,希望把文章链接给更多的朋友!

🚀个人主页:欢迎访问Ali.s的首页

⏰ 最近更新:2022年8月18日

⛽ Java框架学习系列:【Spring】【SpringMVC】【Mybatis】

🔥 Java项目实战系列:【飞机大战】【图书管理系统】

🍭 Java算法21天系列:【查找】【排序】【递归】

⛳ Java基础学习系列:【继承】【封装】【多态】

🏆 通信仿真学习系列:【硬件】【通信】【MATLAB】

🍄 个人简介:通信工程本硕🌈、Java程序员🚴。目前只会CURD😂

【通信原理】揭开傅里叶级数与傅里叶变换的神秘面纱(通信原理简明)

💌 点赞 👍 收藏 💗留言 💬 都是我最大的动力💯

文章目录前言一、时域与频域二、傅里叶级数1、傅里叶级数的理解2、傅里叶级数的频谱3、傅里叶级数的条件三、傅里叶变换1、傅里叶变换的理解2、神奇的欧拉3、傅里叶级数与变换总结前言

傅里叶变换和傅里叶级数是有史以来最伟大的数学发现之一。它们可以帮助我们将函数分解成其基本成分。它们揭示了任何数学函数的基本模块,但是傅里叶分析的公式对于连高数中sin2x的积分都不熟悉的工科白菜来说简直就是连多看它一样的勇气都没有,我想这就是为什么复杂的傅里叶分析成为大学中通信专业的疑难杂症的主要原因,更不要说学好《信号与系统》、《通信原理》这些专业课程了,所以本文就从不一样的角度来研究它的本质,来揭开傅里叶级数与傅里叶变换的神秘面纱。

一、时域与频域

以你来到这个世界为起点,随着时间的流逝,你将会在时间轴上留下属于你的时间烙印;股票的走势随着时间的变化而变化,在每个具体的时间点上都会有属于它的价格;这种以时间作为节点来看待问题的方法便是时域分析。 这么看来,好像所有的事务都是随着时间不断的发展的,如果你有这种想法,那么恭喜你,你应该就是那个傅里叶学不好的白菜。其实从频域的角度看,这个世界便是静止的了,这里所说的静止不是你们学的那个哲学世界是变化的非静止的,要用变化的眼光看待问题的那个静止。下面用钢琴的音节来表示频域的特征,每个音节的组合,才弹奏出音乐,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势,而在频域,只有那一个永恒的音节。

二、傅里叶级数1、傅里叶级数的理解

当你看到下面这个傅里叶级数的公式时,你肯定时一个头两个大,但一打开《信号与系统》、《通信原理》等书籍,动不动就跳出一个傅里叶级数或傅里叶变换,弄一长串公式,让人云山雾罩。 仔细观察上面的式子,不难发现,信号f(t)其实就是一些不同频率的正弦函数组成相加而成,这里就是关键了,还记得上面钢琴谱的时域音乐是如何出来了的吗?正是一个个音节组合叠加而成,看到这里,你应该更加明白时域与频域的含义了,所以可以将上面的式子抽象成比较简单的式子来表达: 那么不难发现,简化的式子只需要解出直流分量A0和傅里叶级数系数an、bn,就能够确定出信号。下面给出系数的计算公式:

2、傅里叶级数的频谱

通过上面傅里叶级数的理解,可以看出任何信号都是正弦波的叠加,那么相当于同一个正弦波做不同的振荡,是不是就可以对信号进行合成,下面有个神奇的动图,很好的展示了这个特点, 下面一起来看一下矩形波是如何形成的,简单的使用MATLAB进行一下仿真模拟;

x=0:pi/4:6*pi;for step=1:2:50 f=0; for i=1:2:step f = f+1/i*sin(i*x); end plot(f);set(figure(1)); filename=[num2str(step)]; print(1,filename); end

随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了,由傅里叶级数公式可知,如果需要做成一个标准的矩形波,那需要n无限大,所以是不可能完成的,只能对其进行大致模拟,主要是这种思想,真是思想有多远,就能走多远。

3、傅里叶级数的条件

说了这么多,感觉是不是已经懂了傅里叶级数的内容,那么你肯定已经知道信号可以通过一系列的正弦波叠加而成,而正弦波都是周期信号,所以能够使用傅里叶展开的信号必然是周期信号。一般我们遇到的周期信号都能满足狄利克雷条件,这里引入了狄利克雷条件: (1)在一周期内,只有有限个第一类间断点; (2)在一周期内,极值数目应是有限个; (3)在一周期内,信号是绝对可积的。 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。跳跃间断点:函数在该点左极限、右极限存在但不相等。可去间断点和跳跃间断点称为第一类间断点。

三、傅里叶变换1、傅里叶变换的理解

既然傅里叶级数这么强,那么还需要傅里叶变换干什么呢,当然是来解决非周期信号的问题了,由于傅里叶级数是对周期信号进行处理的,利用这样的傅立叶级数展开可以得到信号的频率分量,然而对于非周期信号我们没法傅立叶级数展开,因为不满足狄利克雷条件,所以我们利用引入频谱密度这样的方法来处理,这个在下一篇频域性质分析中会提及到。下面给出傅里叶变换的公式: 如果你已经理解了傅里叶级数的一切,那么傅里叶变换就会非常简单了。一个时间函数的傅里叶变换是一个频率的复值函数,其大小代表了原始函数中存在的该频率的数量,其参数是该频率的基本正弦波的相位偏移。傅里叶变换不限于时间函数,但原始函数的域就是前面提到的时域。

2、神奇的欧拉

欧拉公式的出现,给傅里叶变换和傅里叶级数的处理带来了非常关键的思想,下面先来看看欧拉的神奇之处,欧拉公式如下: 会惊奇的发现,这个式子说明一个指数函数可以写成复数域的两个正弦函数的和,这里是不是很熟练,前面的傅里叶级数是不是说过信号可以由多个正弦波叠加而成,竟然出奇的一致,这可能就是数学的魅力吧,然而更神奇的事还在后面,当t取值为π时,神奇的事情又发生了: 欧拉公式所要表达的是随着时间变化,在复平面上做圆周运动的点,随着时间的改变,在时间轴上就成了一条螺旋线。如果只看它的实数部分,也就是螺旋线在左侧的投影,就是一个标准余弦函数。而右侧的投影则是一个标准的正弦函数。

3、傅里叶级数与变换

当你看到这里,想必已经对傅里叶级数和傅里叶变换有了一个全新的认识,傅里叶级数是周期变换,傅里叶变换是一种非周期变换,傅里叶级数是以三角函数为基对周期信号的无穷级数展开,如果把周期函数的周期取作无穷大,对傅里叶级数取极限即得到傅里叶变换。傅里叶变换是从傅里叶级数推演而来的,傅里叶级数是所有周期函数都可以分解成一系列的正交三角函数。那么一起看看两者在信号的不同阶段的表现,你将会更加明白上面这绕口的表述了: 这样,周期函数对应的傅里叶级数即是它的频谱函数。需要提及的是傅里叶级数是周期信号的另一种时域的表达方式,也就是正交级数,它不同频率的波形的叠加,而傅里叶变换就是完全的频域分析。 一个信号从不同的角度去观察时,便可以得出不同的特征,时域信号的周期性不确定,决定了是使用傅里叶变换还是傅里叶级数对其分析,而信号的特征有很多,幅度频谱是最常见之一。

总结

对于周期信号利用傅立叶级数可以将其展开为很多正弦余弦信号的叠加,能清楚看出原信号所含有的频率成分,利用这样的傅立叶级数展开可以得到信号的频率分量;然而对于非周期信号我们没法傅立叶级数展开,因为不满足狄利克雷条件,所以我们利用引入频谱密度这样的方法,因为非周期信号可以认为是周期无限大的周期信号,利用这样的关系以及频谱密度的方法,然后利用欧拉公式和极限的知识,可将傅立叶级数的展开式变成了傅立叶变换的积分式,所以,傅立叶级数和傅立叶变换实际目的是相通的,就是观察信号的频率成分,以便利用频域分析的方法。

本文链接地址:https://www.jiuchutong.com/zhishi/297667.html 转载请保留说明!

上一篇:[毕业设计]2022-2023年最新最全计算机专业毕设选题推荐汇总(毕业设计2022年幼儿园)

下一篇:VUE2安装初始化步骤(2022)(vue初始化命令)

  • ipad2021支持多少w快充(ipad2020支持多少w)

    ipad2021支持多少w快充(ipad2020支持多少w)

  • 苹果13有pro版吗(苹果13pro有5g吗)

    苹果13有pro版吗(苹果13pro有5g吗)

  • 天猫精灵红外遥控器怎么用(天猫精灵红外遥控)

    天猫精灵红外遥控器怎么用(天猫精灵红外遥控)

  • 咸鱼排队什么意思(咸鱼排队怎么戳)

    咸鱼排队什么意思(咸鱼排队怎么戳)

  • 钉钉直播回放倍数算吗(钉钉直播回放倍速怎么算时间)

    钉钉直播回放倍数算吗(钉钉直播回放倍速怎么算时间)

  • ipad出现一个框按不了(ipad出现一个框怎么无法解锁)

    ipad出现一个框按不了(ipad出现一个框怎么无法解锁)

  • iphone的悬浮球不见了怎么办(苹果悬浮球失灵怎么办)

    iphone的悬浮球不见了怎么办(苹果悬浮球失灵怎么办)

  • y9s有没有微信美颜(vivoy91微信美颜怎么开)

    y9s有没有微信美颜(vivoy91微信美颜怎么开)

  • lcd液晶显示器的原理(LCD液晶显示器的四大特点)

    lcd液晶显示器的原理(LCD液晶显示器的四大特点)

  • 快手会自动退款吗(快手会自动退款嘛)

    快手会自动退款吗(快手会自动退款嘛)

  • vivo iqoo可以遥控空调吗(vivo iqoo5可以遥控空调吗)

    vivo iqoo可以遥控空调吗(vivo iqoo5可以遥控空调吗)

  • 系统分区多大合适(电脑系统分区多少g)

    系统分区多大合适(电脑系统分区多少g)

  • 苹果11相册最近删除在哪里(苹果11相册最近删除怎么加密)

    苹果11相册最近删除在哪里(苹果11相册最近删除怎么加密)

  • vivox23能无线充电么(vivox21a无线充电)

    vivox23能无线充电么(vivox21a无线充电)

  • oppoa11x是闪充吗(oppoa11x有闪充吗)

    oppoa11x是闪充吗(oppoa11x有闪充吗)

  • 手机版wps怎么合并(手机版wps怎么合并单元格)

    手机版wps怎么合并(手机版wps怎么合并单元格)

  • 序列号fd是翻新机吗(序列号f0)

    序列号fd是翻新机吗(序列号f0)

  • 小米勿扰模式闹钟会响吗(小米勿扰模式闹铃不响)

    小米勿扰模式闹钟会响吗(小米勿扰模式闹铃不响)

  • 淘宝神笔在哪里(淘宝神笔模板哪里购买)

    淘宝神笔在哪里(淘宝神笔模板哪里购买)

  • 荣耀10指纹识别在哪(荣耀10指纹识别坏了怎么修)

    荣耀10指纹识别在哪(荣耀10指纹识别坏了怎么修)

  • 苹果无线耳机怎么连(苹果无线耳机怎么充电)

    苹果无线耳机怎么连(苹果无线耳机怎么充电)

  • 充电线破皮修复方法(充电线破皮修复要多少钱)

    充电线破皮修复方法(充电线破皮修复要多少钱)

  • Win10版本1909 Build 18363.1316累积更新补丁KB4598229正式推送(win10版本1909和22h2)

    Win10版本1909 Build 18363.1316累积更新补丁KB4598229正式推送(win10版本1909和22h2)

  • Vue生命周期钩子剖析(共12个钩子)(vue生命周期钩子函数)

    Vue生命周期钩子剖析(共12个钩子)(vue生命周期钩子函数)

  • 【自然语言处理】Word2Vec 词向量模型详解 + Python代码实战(自然语言处理属于人工智能的哪个领域)

    【自然语言处理】Word2Vec 词向量模型详解 + Python代码实战(自然语言处理属于人工智能的哪个领域)

  • phpcms在哪设置数据库(phpcms怎么用)

    phpcms在哪设置数据库(phpcms怎么用)

  • 境外承包工程项下资金
  • 分期付款的消费税按实际收入算吗对吗
  • 个人转让房产两年内全额计税是什么意思
  • 发票报销哪些要素不能少
  • 增值税发票四舍五入
  • 个税申报申报方式选择
  • 合并报表负商誉为什么计留存收益
  • 出售无形资产净收益是收入吗
  • 原材料盈亏会计分录怎么写
  • 土地增值税清算规程实施细则
  • 购买虚开增票怎么处理?
  • 工程外出经营流程
  • 公司转投资的额度
  • 购买的职业险计入哪个科目
  • 哪些税不可以扣除
  • 发票开什么明目列福利费
  • 软件的维修性要求
  • 预交增值税抵减申报
  • 出口退税免退税
  • 往来款核销需要如何确认
  • 科研费用拨款如何记账?
  • 政府授权国企为基建项目建设单位
  • 未担保余值什么意思
  • 几个人注册公司好还是个体户好
  • 公司设计费属于什么费用
  • deepin 文件管理器
  • 集团内部调拨账务处理
  • 外企借款投资利息高吗
  • 公司租赁办公室要注意什么
  • 软件和集成电路杂志官网
  • 长期借款的会计处理例题
  • 财政总预算会计分为几级
  • php获取文本内容
  • php批量上传图片到服务器
  • ORB_SLAM2+kinect稠密建图实战项目总结
  • 人工智能ai软件免费版app
  • android界面源码
  • 本年利润是净利润吗
  • 支票小写金额前的羊
  • 现金流量表填写说明
  • 内账增值税计入什么科目
  • 未经审计情况说明怎么写
  • css入门经典
  • phpcms怎么用
  • 筹资活动产生的现金流量净额减少说明什么
  • 税费损失
  • 单位收风险金违法吗
  • 长期待摊费用为什么属于资产
  • 在施工期间,承包商可能遇到不能预见
  • 收回客户货款会计分录怎么写
  • 其他综合收益要转入投资收益吗
  • 个税基数和社保有关系吗
  • 营改增后不动产发票怎么开
  • 企业成立第二年有补贴吗
  • 关闭默认共享的影响
  • 怎么自己安装windows7
  • w7系统怎么扫描
  • win7音频服务未响应
  • linux d
  • 个性化定制方案怎么写
  • winxp截图快捷命令
  • Win10系统如何使用虚拟光驱加载ISO镜像文件?
  • windows 8.1有哪些版本
  • [置顶] 此外,车牌号:458143(懂得都懂[吃瓜])
  • linux复制文件命令mv
  • pycharm怎么学
  • JavaScript中数组的相关方法
  • unity更新下载文件
  • javascript例题
  • 不同版本安卓控制台区别
  • jquery基础知识梳理
  • jquery获取点击元素的id
  • 梦见擦窗户框
  • 国家税务总局的局长什么级别
  • 国家税务局广东省电子税务总局手机版
  • 银饰品交消费税吗
  • 2023年内蒙古房贷利率
  • 南京电费余额查询
  • 宏观经济十大因素有哪些
  • 退契税的时间是什么时候
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设