位置: IT常识 - 正文

yolov5网络结构代码解读(yolov4tiny网络结构)

编辑:rootadmin
yolov5网络结构代码解读 文章目录前言1.项目介绍2.yolov5的网络结构1.yolov5s的配置文件2.网络模型的初始化和训练过程3.backbone4.head1.三层预测2.4层预测5.detect补充个更直观点的图总结前言

推荐整理分享yolov5网络结构代码解读(yolov4tiny网络结构),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:yolov5s网络结构,yolov3tiny网络结构,yolov1网络结构图详解,yolov1网络结构,yolov5 网络结构,yolov1网络结构,yolov1网络结构,yolov5 网络结构,内容如对您有帮助,希望把文章链接给更多的朋友!

yolov5已经很成熟了,作为一个拥有发展系列的检测器,它拥有足够的精度和满足现实中实时性要求,所以许多项目和比赛都能用的上,自己也拿来参加过比赛。 本博客的讲解代码来源:https://github.com/ultralytics/yolov5

1.项目介绍

YOLOv5针对不同大小的输入和网络深度宽度,主要分成了(n, s, m, l, x)和(n6, s6, m6, l6, x6),这些都在yolov5的项目代码的配置文件中有对应。其中随着版本的更新,里面也多了好多其他模块。这里,我主要用的是v6.0版本。

2.yolov5的网络结构

这里主要结合代码介绍下yolov5sv6.0的网络结构部分,其他大小的框架都差不多。 如下图所示,这里给出了我参考一些yolov5图根据6.0代码所画的yolov5l网络

修改:yolov5s->yolov5l(注意这里的结构是yolov5l的,因为配置文件的宽度和深度对应的比例因子是1的时候是yolov5l,yolov5s是乘以了0.5比例的的)

结构图:

1.yolov5s的配置文件

相关参数

# YOLOv5 by Ultralytics, GPL-3.0 license# Parametersnc: 4 # number of classes,检测的类别depth_multiple: 0.33 # model depth multiple, 决定下面的 number:nwidth_multiple: 0.50 # layer channel multiple,解决网络的深度和宽度anchors: - [10,13, 16,30, 33,23] # P3/8 # anchor尺寸设置 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 # 可以自己手动设置,也可以自动聚类

backbone 里面的-1表示自身的特征层的位置

# YOLOv5 v6.0 backbonebackbone: # [from, number, module, args[C,K,S,P]] P:会根据公式自动推导,配置文件也看不太出。#分别对应:[输入位置,叠加层数,使用模块名称,[输出通道数,卷积核大小,步距,padding]] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9,总共 ]

head 里面的[-1, 6]表示自身特征层和第6个位置上的特征层。如[[-1, 6], 1, Concat, [1]],表示和backbone里显示的P4那层特征层相cat。

# YOLOv5 v6.0 headhead: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]2.网络模型的初始化和训练过程

根据配置文件,初始化网络模型: 代码路径:yolov5-master/models/yolo.py

def parse_model(d, ch): # model_dict, input_channels(3) LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}{'module':<40}{'arguments':<30}") anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors,每一个predict head上的anchor数 = 3 no = na * (nc + 5) # number of outputs = anchors * (classes + 5) # layers: 保存每一层的层结构 save: 记录下所有层结构中from中不是-1的层结构序号 c2: 保存当前层的输出channel layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out # from(当前层输入来自哪些层), number(当前层次数 初定), module(当前层类别), args(当前层类参数 初定) for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except NameError: pass n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain:控制深度 如v5s: n*0.33 n: 当前模块的次数(间接控制深度) if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x,ACConv,CAM_Module): c1, c2 = ch[f], args[0] # c1: 当前层的输入的channel数 c2:当前层的输出的channel数(初定) ch:记录着所有层的输出channel if c2 != no: # if not output,最后一层 c2 = make_divisible(c2 * gw, 8) # 通道数调整(64*0.5,8) args = [c1, c2, *args[1:]] # if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x]: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum(ch[x] for x in f) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f]yolov5网络结构代码解读(yolov4tiny网络结构)

顺序执行网络的训练过程:

m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module t = str(m)[8:-2].replace('__main__.', '') # module type np = sum(x.numel() for x in m_.parameters()) # number params:计算参数量 m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}{t:<40}{str(args):<30}') # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save)3.backbone

backbone:特征提取网络。由yolov3的Darknet53变为yolov4的CSPDarknet53,yolov5里较小改动。

根据配置文件解析整个backbone的结构:

Conv:conv+bn+SiLU,就是如上图所示的CBS。yolov5s里用了三种不同stride和padding的conv组成CBS。[k,s,p]表示卷积核,stride步距和padding填充,注意网络过程中这三者的变化。第0层: [-1, 1, Conv, [64, 6, 2, 2]]:输入图片先经过一个6x6,步距为2,padding为2的Conv模块。输出通道由3变为64,分辨率变为原来的1/4,长宽各减少了两倍。这个模块就是为了在卷积过程中降低分辨率的。

网络结构代码路径:yolov5-master/models/common.py

class Conv(nn.Module): # Standard convolution def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) def forward(self, x): return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): return self.act(self.conv(x))第1层:[-1, 1, Conv, [128, 3, 2]]:经过一个3x3,步距为2,padding为1的Conv模块。输出通道由64变为128,分辨率变为原来的1/4,长宽各减少了两倍。 +第2层: [-1, 3, C3, [128]]:经过一个C3模块,输出通道为128,BottleNeck1x3。C3其实就是为了适配yolo的Darknet对CSPNet的改进。通过用两个CBS模块来将通道数划分成两个部分,其中一个部分不变,另一个部分还要通过多个BottleNeck去堆叠。接着将两个分支的信息在通道方向进行Concat拼接,最后再通过CBS的模块进一步融合。 C3结构如下:

CSPNet的优点: 1.Strengthening learning ability of a CNN:现有的CNN在轻量化后,其精度大大降低,因此希望加强CNN的学习能力,使其在轻量化的同时保持足够的准确性。 2.Removing computational bottlenecks:希望能够均匀分配CNN中各层的计算量,这样可以有效提升各计算单元的利用率,从而减少不必要的能耗。 3.Reducing memory costs:在减少内存使用方面,采用cross-channel pooling,在特征金字塔生成过程中对特征图进行压缩。

class C3(nn.Module): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels,1/2 self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2) self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) def forward(self, x): return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))第3层:[-1, 1, Conv, [256, 3, 2]]:经过一个3x3,步距为2,padding为1的Conv模块。输出通道由128变为256,分辨率变为原来的1/4,长宽各减少了两倍。第4层:[-1, 6, C3, [256]]:经过一个C3模块,输出通道为256,BottleNeck1x6。第5层: [-1, 1, Conv, [512, 3, 2]]:经过一个3x3,步距为2,padding为1的Conv模块。输出通道由256变为512,分辨率变为原来的1/4,长宽各减少了两倍。第6层:[-1, 9, C3, [512]]:经过一个C3模块,输出通道为512,BottleNeck1x9。第7层: [-1, 1, Conv, [1024, 3, 2]]:经过一个3x3,步距为2,padding为1的Conv模块。输出通道由512变为1024,分辨率变为原来的1/4,长宽各减少了两倍。第8层:[-1, 3, C3, [1024]]:经过一个C3模块,输出通道为1024,BottleNeck1x3。第9层:[-1, 1, SPPF, [1024, 5]]:通过最大池化层进行感受野的扩张。和SPP不同的是,这里SPPF并没有使用三个使用不同核(5,9,13)大小的maxpool并行结构,而是使用了三个核大小为5x5的maxpool串行结构来达到和SPP同样的计算结果。但是速度却几乎是SPP的两倍快。详细对比和代码可以看看这篇博客https://blog.csdn.net/qq_37541097/article/details/123594351?spm=1001.2014.3001.5502 class SPPF(nn.Module): # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * 4, c2, 1, 1) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))4.head1.三层预测

head:yolov5配置文件里写的head,其实就是对应通用检测模块里的neck。就是为了更好的检测不同尺度目标大小设计的特征金字塔结构。结构如下图所示:

第10层:[-1, 1, Conv, [512, 1, 1]]:经过一个1x1,步距为1,padding为0的Conv模块。输出通道由1024变为512,分辨率不变。第11层:[-1, 1, nn.Upsample, [None, 2, ‘nearest’]]:上采样层,采样因子为2,模式为邻近插值。第12层:[[-1, 6], 1, Concat, [1]]:concat在索引[-1,6]进行通道上的拼接,当前层上采样后与索引为6的层进行自上而下特征层“融合”,通道变为2倍。上采样,分辨率长宽变为原来的2倍。第13层:[-1, 3, C3, [512, False]]:经过一个C3模块,输出通道为512,BottleNeck2x3。 第14层:[-1, 1, Conv, [256, 1, 1]]:经过一个1x1,步距为1,padding为0的Conv模块。输出通道由512变为256,分辨率不变。第15层:[-1, 1, nn.Upsample, [None, 2, ‘nearest’]]:上采样层,采样因子为2,模式为邻近插值。第16层:[[-1, 4], 1, Concat, [1]]:concat在索引[-1,4]进行通道上的拼接,当前层经过上层的上采样后与索引为4的层进行自上而下(FPN)特征层“融合”,通道变为2倍。上采样,分辨率长宽变为原来的2倍。第17层:[-1, 3, C3, [256, False]]:经过一个C3模块,输出通道为256,BottleNeck2x3。作为预测的head:P3层。第18层:[-1, 1, Conv, [256, 3, 2]]:经过一个3x3,步距为2,padding为1的Conv模块。输出通道由512变为256,分辨率变为原来的1/4,长宽各减少了两倍。第19层:[[-1, 14], 1, Concat, [1]]:concat在索引[-1,14]进行通道上的拼接,当前层经过上层的分辨率减低后与索引为14的层进行自下而上(PANet)特征层“融合”,通道变为2倍。分辨率长宽变为原来的1/2。第20层:[-1, 3, C3, [512, False]]:经过一个C3模块,输出通道为512,BottleNeck2x3。作为预测的head:P4层。第21层:[-1, 1, Conv, [512, 3, 2]]:经过一个3x3,步距为2,padding为1的Conv模块。输出通道512不变,分辨率变为原来的1/4,长宽各减少了两倍。第22层:[[-1, 10], 1, Concat, [1]]:concat在索引[-1,10]进行通道上的拼接,当前层经过上层的分辨率减低后与索引为10的层进行自下而上(PANet)特征层“融合”,通道变为2倍。分辨率和上一层一致。第23层:[-1, 3, C3, [1024, False]]:经过一个C3模块,输出通道为1024,BottleNeck2x3。作为预测的head:P5层。2.4层预测

Yolov5l6,m6,n6,x6都是用四层来预测输出的。

# yolov5l6:# YOLOv5 v6.0 backbonebackbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 [-1, 3, C3, [768]], [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 11 ]# YOLOv5 v6.0 headhead: [[-1, 1, Conv, [768, 1, 1]], # [-1, 1, Conv, [768, 1, 1]],[-1, 1, CAM_Module, [768, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 8], 1, Concat, [1]], # cat backbone P5 [-1, 3, C3, [768, False]], # 15 [-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 19 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 23 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 20], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 26 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 16], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [768, False]], # 29 (P5/32-large) [-1, 1, Conv, [768, 3, 2]], [[-1, 12], 1, Concat, [1]], # cat head P6 [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) ]

通过在backbone里多加一层768通道的特征层,会使最顶层的分辨率继续按1/4减小,长宽减小一半。 然后经过自上而下和自下而上的特征层匹配coancat融合,会多出一个P6预测层。多用一个预测层会有什么好处呢:能够检测更大的目标物体,提取的目标特征语义信息更丰富,自上而下的传递的语义信对各个层更好。

5.detect

通过卷积预测输出相应通道数的特征层用于分类和回归。 c = (5+num_cls)x3:(四个坐标偏移值+1个置信度+预测的类别数)x每个像素所给3个anchors。 Conv:这里的就是普通的1x1卷积。

补充个更直观点的图

总结

这里对Yolov5的网络结构部分进行了总结,后续有时间,再对其他部分做总结。

本文链接地址:https://www.jiuchutong.com/zhishi/297768.html 转载请保留说明!

上一篇:什么,BOM指的是物料清单?(bom也称为)

下一篇:大模型未来趋势(模型未来的发展趋势)

  • 甲方应项目具备开工条件
  • 企业财务独立核算
  • 多缴税款抵税有期限吗
  • 营改增后计税依据
  • 固定资产原价的结余额
  • 无形资产后续支出计入什么科目
  • 企业所得税营业税金及附加
  • 投资款印花税的税率是多少啊
  • 税控盘全额抵扣分录
  • 产品定价的含义
  • 哪些情况下,企业需要进行分销渠道设计决策
  • 网上办税服务厅app下载
  • 其他应付款质保金到期怎么附单据
  • 差额开票扣除额可以大概数
  • 发票两边的孔怎么做
  • 没进项发票要交多少税
  • 购买厂房可以一次买卖吗
  • 赠送算商业用途吗
  • 高新企业研发项目
  • 基本户和一般户的区别和用途
  • linux的sed命令
  • 如何关闭windows10自动更新
  • 上月发生的费用本月报销记账
  • 企业所得税汇算清缴表
  • 固定资产折旧的影响因素
  • 鸿蒙怎么添加
  • Win11 Build 22454.1000 开发者预览版发布(附更新修改已知问题+安装)
  • 非限定性净资产相当于哪个科目
  • 公司主要开支是指什么
  • 冲销以前年度多计提的工资资产负债表怎么平
  • php扩展ffmpeg教程
  • vue3 超好用的富文本编辑器
  • 金融业贷款损失多少
  • framework启动
  • zentaophp框架
  • 尚硅谷百度贴吧
  • 长期待摊费用账务处理
  • 金税盘开票如何增加商品编码
  • 个人以不动产投资成立一人有限公司
  • 汇算清缴期间费用保险费是什么
  • mysql内连接查询使用汉语作为官方语言的所有国家
  • 公司有收入可以做零申报吗
  • 工资表怎么每个都有表头
  • 资产负债表中衍生金融资产项目应根据什么科目填列
  • 企业所得税报表查询怎么查
  • 哪些属于费用发票类型
  • 月底如何结转成本
  • 固定资产一次性加速折旧
  • 印花税如何计提缴纳
  • 制作费计入什么费用
  • 存货质押融资的公司有哪些
  • pe市盈率法
  • 工地加油
  • sql server如何判断数据库是否存在
  • 预览版win10
  • 使用windows hello之前必须设置pin
  • 服务器centos6.8安装教程
  • xp系统进程
  • win8触摸板失灵怎么办
  • Qoeloader.exe - Qoeloader是什么进程 有什么用
  • win10系统如何关闭杀毒软件和防火墙
  • windows10右键菜单被任务栏挡
  • win8垃圾清理
  • win8磁盘占用率100%如何解决
  • mac2019强制关机
  • cocos2djs
  • perl编程
  • perl随机数
  • cocos2dx运行原理
  • node.js快速入门
  • ip地址编址方法
  • JQuery中Ajax()的data参数类型实例分析
  • Rotate object with mouse click or touch in Unity3D
  • javascript怎么样
  • js中生成随机数
  • 西安市地税局各科科长
  • 纳税工会经费申请怎么写
  • 国税地税征管体制改革方案
  • 个体户刻公章需要备案吗
  • 个人可不可以申请办理租赁性质车辆登记
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设