位置: IT常识 - 正文

【路径规划】A*算法方法改进思路简析(路径规划原理)

编辑:rootadmin
【路径规划】A*算法方法改进思路简析 A*算法方法改进思路简析0. 前言1. A*算法的总体流程2. A*算法的改进2.1 启发函数的选择与优化2.1.1 预估函数的选择2.1.2 为启发函数增加权重系数2.1.3 节点比较时启发函数的优化2.2 搜索邻域的优化2.2.1 舍弃邻域法2.2.2 扩展邻域法2.3 双向搜索算法(双向A*)2.4 对openlist列表进行数据结构优化2.4.1 未排序数组或链表2.4.2 有序数组2.4.3 有序链表2.4.4 有序跳表2.4.5 哈希表2.4.6 二叉堆2.4.7 数据结构优化总结2.5 曲线平滑化3. 改进方法的实验测试样例解释与源程序测试3.2 对启发函数的改进3.3 搜索邻域的优化3.3.1 删减邻域法3.3.2 邻域扩展法3.3 路径平滑3.4 双向A*3.5 综合改进4. 总结代码与相关实现参考文献与相关网站0. 前言

推荐整理分享【路径规划】A*算法方法改进思路简析(路径规划原理),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:路径规划的基本流程和方法,路径规划步骤,路径规划原理,路径规划什么意思,路径规划教程,路径规划最新算法,路径规划教程,路径规划 rrt,内容如对您有帮助,希望把文章链接给更多的朋友!

A算法作为经典的传统路径规划算法,在计算全局最优路径有着较好的性能,在机器人导航等领域上起着关键作用,针对这点出发,将对A算法进行基本功能实现,以分析其优缺点,并在此基础上进行改进。改进的内容为,将针对特定地图的相关特点,设计合理的预估函数,设置了包含代价函数和启发函数的权重函数,其次,将传统的8方向搜索降为5个方向,舍弃无用的方向,然后在此基础上,对开放列表的数据结构进行堆优化,并且采用双向A算法进一步提高计算速度,并针对实际机器人运动过程中的路径不平滑问题采用贝塞尔曲线进行平滑化处理。经过仿真,改进后的算法在路径计算时间,路径平滑度都有改善,并进一步验证了A算法的可行性。这是我第一次尝试写文章,因此更像是一个笔记之类的东西,难免有错误与不妥之处,敬请指出与海涵。

1. A*算法的总体流程

A*算法作为Dijkstra算法和BFS的结合算法,其与这两种算法的区别就是采用了启发函数,这也是这个算法的核心。 启发函数的形式:

*f(n)=g(n)+h(n)* (1)

*f(n)*表示结点的综合优先级,在选择结点时考虑该结点的综合优先级; *g(n)*表示起始点到当前结点的代价值; *h(n)*表示当前结点到目标点的代价估计值,也就是预估函数。 为了对这两个值进行相加,这两个值必须使用相同的衡量单位,以下的讨论也都是在此基础上进行的。 为了便于讨论与理解,下面的地图的形式都会已二维数组的形式表示。因此,为了简单预估当前节点到目标点的代价,采用较多的是欧几里得距离,即

d(n)=√(〖(be.x-end.x)〗^2+〖(be.y-end.y)〗^2 )【路径规划】A*算法方法改进思路简析(路径规划原理)

A*算法通过设置两个列表openlist和closelist来对地图中的点进行控制。算法伪代码如下:

将起始点s加入到开启列表openlist中重复以下过程: a) 遍历开启列表openlist,寻找F值最小的结点,并将其作为当前要处理的结点 b) 将要处理的结点移到关闭列表closelist c) 对当前结点的8个相邻结点的每个结点: i. 如果他是不可抵达的或者已经在关闭列表closelist中,忽略; ii. 如果他不在开启列表openlist中,将其加入openlist,并把当前结点设置为其父节点,记录当前结点的F、G、H值; iii. 如果他已经在开启列表openlist中,检查这条路径(即经由当前结点到达相邻结点)是否更好,用G值做参考,更小的G值表示这个更好的路径,如果是这样,将其父节点设置为当前结点,并重新计算他的G值和F值,如果开启列表openlist是按F值进行排序,改变后需要重新排序。 d) 停止,当 i. 终点加入到了开启列表openlist中,此时路径已经找到 ii. 查找重点失败,并且开启列表openlist中是空的,此时没有路径保存路径,从终点开始,每个结点沿着其父节点移动直到起点。2. A*算法的改进2.1 启发函数的选择与优化

在A算法的总体流程中提到,A算法的核心就是启发函数,根据式(1),其中的g(n)作为起始点到当前点的代价,其值一般是固定的,所以围绕启发函数的优化一般都是围绕h(n)即预估函数展开的。

2.1.1 预估函数的选择

前面提到,对于二维网格地图,一种常用的预估函数就是应用欧几里得距离。但是,需要注意的是,如果机器人的运动并不是无限制的,或者说是不允许无角度限制的进行运动,例如:当机器人被设定为只允许沿八方向运动时,此时欧氏距离并不能准确描述当前点到终点的运动代价,因为机器人不允许按这种方式直接抵达,而此时采用切比雪夫距离则可以更准确的描述运动代价。 切比雪夫距离公式:

*d(n)=max⁡(abs(be.x-end.x),abs(be.y-end.y))*

同样的,如果当机器人只允许沿四个方向运动,那么曼哈顿距离更能准确描述运动代价。 曼哈顿距离公式:

*d(n)=abs(be.x-end.x)+abs(be.y-end.y)*

如果h(n)能够更为准确的描述当前点到终点的代价,那么就可以使在依赖启发函数f(n)进行选点时更加准确。 所以,针对实际的工作需求,确定合适的*h(n)*是十分重要的,预估函数越贴近实际的路径代价,其选点准确度越高,但也需要注意h函数的复杂程度,过于复杂的预估函数会极大的提高计算量,造成运算速度减慢。

2.1.2 为启发函数增加权重系数

关于预估函数另一个方面的优化是改进启发函数的权重系数,对于A算法的基本原理,不难将其理解为迪杰斯特拉算法和BFS的综合应用, 其中Dijkstra算法能通过比较最优的实际代价来有效的找到当前的最优路径或是其大致方向,而BFS则可以快速扩展当前点的周围节点。 简言之,Dijkstra算法的特性是一定会找到最优路径,但速度很慢。而BFS则是运行速度很快,但是不能保证结果一定是最优路径。再通过观察这两个算法的原理,Dijkstra算法主要要求的是已计算的路径的代价。而BFS考察的是还有多少步到达终点,所以不难发现可以将启发函数与这两种算法进行对应,Dijkstra算法对应的就是代价函数g(n),而BFS对应的是预估函数h(n)。 再回到我们对启发函数的定义,不难发现启发函数就是代价函数与估计函数1:1的和,但是,如果我们更改实际代价与预估代价的权重,就可控制A算法更偏向于实际代价或是预估代价,例如将代价权重改为2:1,即f(n)=2g(n)+h(n),此时,f(n)会更偏向描述实际代价,也就是会更优先考虑当前路径已造成的代价,所以f会更贴近于Dijkstra算法,当我们推广这个结论,当g(n)>> h(n)时,就相当于f(n)只考虑实际代价而完全不考虑预估代价,即退化为Dijkstra算法。反之,若g(n)的权重系数小于h(n)的权重系数,则会优先考虑预估代价,做同样的推广,当h(n)>> g(n)时,A算法就会退化为BFS。结论如表1。

因此,调整实际代价与预估代价的权重,可以有效地减少搜索点,提高搜索速度。 为了便于考虑,我们可以将启发函数改为如下形式,即在预估函数前增加一个系数w,从而改变启发函数的权重。 f(n)=g(n)+wh(n) (2)* f(n)=g(n)+w*h(n) (2)

进一步的,我们不可能只考虑搜索速度而不考虑规划的路径,此时就考虑使用动态加权的方式,以原本的启发函数h(n)为判断依据,我们把它

本文链接地址:https://www.jiuchutong.com/zhishi/297774.html 转载请保留说明!

上一篇:使用vue,实现前端导入excel数据(vue前端怎么运行)

下一篇:【2022.3】尚硅谷Vue.js从入门到精通基础笔记(理论+实操+知识点速查)(尚硅谷百度贴吧)

  • 快充和闪充的区别(快充和闪充的区别是线还是充电器)

    快充和闪充的区别(快充和闪充的区别是线还是充电器)

  • nokeyboarddetected是什么意思

    nokeyboarddetected是什么意思

  • 苹果打开软件闪退是怎么回事(iphone软件一闪一闪的)

    苹果打开软件闪退是怎么回事(iphone软件一闪一闪的)

  • 华为Nova5安装应用权限在哪(华为nova5安装未知应用权限怎么设置)

    华为Nova5安装应用权限在哪(华为nova5安装未知应用权限怎么设置)

  • intel第十代cpu上市时间(第10代cpu)

    intel第十代cpu上市时间(第10代cpu)

  • 卡一卡二网速有区别吗(卡1卡2网速不一样)

    卡一卡二网速有区别吗(卡1卡2网速不一样)

  • 华为笔记本发热严重怎么办(华为笔记本发热严重吗)

    华为笔记本发热严重怎么办(华为笔记本发热严重吗)

  • 苹果11怎么设置指纹登录(苹果11怎么设置悬浮球)

    苹果11怎么设置指纹登录(苹果11怎么设置悬浮球)

  • 手机录屏是干什么用的(手机录屏是干嘛的)

    手机录屏是干什么用的(手机录屏是干嘛的)

  • mp3充电时红灯会闪吗(mp3为什么充电时闪烁带放歌)

    mp3充电时红灯会闪吗(mp3为什么充电时闪烁带放歌)

  • 手机安装包损坏怎么办(为什么手机安装包损坏)

    手机安装包损坏怎么办(为什么手机安装包损坏)

  • 存储器分为哪两种(存储器分为哪两级)

    存储器分为哪两种(存储器分为哪两级)

  • vivo手机红外线在哪(vivo手机红外线遥控器怎么用)

    vivo手机红外线在哪(vivo手机红外线遥控器怎么用)

  • iqoo实体店有卖吗(iqoo实体店有吗)

    iqoo实体店有卖吗(iqoo实体店有吗)

  • 手机刷机以后怎么恢复以前的系统(手机刷机以后怎样找回以前的信息)

    手机刷机以后怎么恢复以前的系统(手机刷机以后怎样找回以前的信息)

  • 手机没有锁屏怎么办(手机没有锁屏怎么打开)

    手机没有锁屏怎么办(手机没有锁屏怎么打开)

  • 接听电话黑屏怎么设置(接听电话黑屏怎么设置vivo)

    接听电话黑屏怎么设置(接听电话黑屏怎么设置vivo)

  • 快手评论上限怎么办(快手评论上限怎么设置)

    快手评论上限怎么办(快手评论上限怎么设置)

  • oppo手机的手电筒打不开了怎么办(oppo手机的手电筒在哪里设置)

    oppo手机的手电筒打不开了怎么办(oppo手机的手电筒在哪里设置)

  • 淘宝怎么申请售后(淘宝怎么申请售后维修)

    淘宝怎么申请售后(淘宝怎么申请售后维修)

  • 华为p20无线投屏到电脑(华为p20无线投屏游戏)

    华为p20无线投屏到电脑(华为p20无线投屏游戏)

  • 全民k歌修音功能在哪(全民k歌怎样开启修音模式)

    全民k歌修音功能在哪(全民k歌怎样开启修音模式)

  • 详解Linux系统中关机与重启相关命令的用法(linux系统的)

    详解Linux系统中关机与重启相关命令的用法(linux系统的)

  • iPhone手机ios9误删照片怎么找回?(误解苹果)

    iPhone手机ios9误删照片怎么找回?(误解苹果)

  • vue实现数据实时刷新(vue数据实时更新)

    vue实现数据实时刷新(vue数据实时更新)

  • 10分钟搞定win11安卓子系统(10分钟搞定3种网红小吃)

    10分钟搞定win11安卓子系统(10分钟搞定3种网红小吃)

  • 前端LayUI框架快速上手详解(一)(前端框架源码)

    前端LayUI框架快速上手详解(一)(前端框架源码)

  • 车船税计入管理费用什么明细
  • 企业所得税年报申报时间
  • 政府农民合作社架构
  • 配建保障房税收规定
  • 印花税滞纳金应计入什么
  • 税务人员岗位有哪些
  • 政府补贴的账务属于哪个科目
  • 出口不退税进项税如何处理
  • 销货退回的税务处理
  • 企业当年发放以往年度工资
  • 实收资本增加的原因
  • 新设备试运行时间
  • 融资租赁咨询服务合同需要交印花税吗
  • 加权平均净资产收益率反映什么
  • 收到福利费会计分录
  • 购货发票未到
  • 旅行社代订机票怎么做账
  • 新企业所得税法规定的企业包括
  • 摊销生产车间负担的保险费
  • 结转工资结算中各种代扣款项
  • 什么是资产减值准备计提
  • 无发票 入账
  • 财务软件税率
  • 收到服务费发票可以计入什么科目
  • win10怎么设置硬盘为第一启动项
  • cpqeadm.exe是什么进程 可以关闭吗 cpqeadm进程查询
  • 往来账款如何做账务处理
  • 各级税务机关应当遵循依法
  • php实现文件上传下载
  • web前端视频教程全套
  • 做了几年前端基础还是很差
  • explorer.exe无响应桌面卡死是什么原因
  • 2023年美赛春季赛成绩查询
  • php中&&什么意思
  • 收到政府扶持资金
  • 关联企业之间业务往来如何定价
  • 电子税务局发票作废流程
  • 年终汇算清缴所得税计算器
  • 月初领票是不是要等到报完税才可以领
  • 支付宝付款对面知道名字吗
  • 设计公司成本核算分录
  • 异地预缴税款少交了城建税怎么办
  • 企业报税表格填写
  • 小规模纳税人享受3%征收率减按1%征收,销售额计算公式
  • 资产减值损失借贷方向
  • 其他应付款如何隐藏收入
  • 将自产产品用于管理部门 增值税
  • 事业单位利息收入
  • 坏账准备的余额百分比法
  • 会计刚开始学什么
  • mysql保留整数
  • freebsd与linux
  • freebsd操作命令
  • linux修改ssh端口号启动失败
  • win8 开机
  • 查看win8.1版本
  • xp无法启动如何修复
  • win10官方升级工具升级
  • win7系统怎么设置屏保图片
  • win10 windows设置
  • unity3d应用开发
  • jQuery实现ctrl+enter(回车)提交表单
  • 有关表格边框的快捷键
  • python3 栈
  • 怎么把perl删除干净
  • jquery获取鼠标位置
  • Android之Volley
  • 经典都有什么
  • javascript模块化规范
  • 修改cmdline
  • android 动画分类
  • javascript中的条件控制语句有哪些?
  • jquery设置背景颜色
  • jquery点击按钮左右滚动效果
  • 目前光伏太阳能组件产量最高的国家是( )
  • 跨区域提供建筑安装服务
  • 税务上的工会经费是必须交的吗?
  • 买房送地下室土地可以吗
  • 中国地税国税
  • 加拿大鹅海关被税交多少
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设