位置: IT常识 - 正文

模型训练步骤(模型训练的过程是什么过程)

编辑:rootadmin
模型训练步骤

推荐整理分享模型训练步骤(模型训练的过程是什么过程),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:模型训练步骤包括,模型训练的步骤,模型训练的步骤,模型训练的步骤,模型训练步骤包括,模型训练步骤有哪些,模型训练步骤包括,模型训练步骤包括验证,内容如对您有帮助,希望把文章链接给更多的朋友!

1.在model.py搭建神经网络。

# 搭建神经网络 10分类网络。import torchfrom torch import nnclass net(nn.Module): def __init__(self): super(net, self).__init__() self.model = nn.Sequential( # 卷积 nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2), # 最大池化 nn.MaxPool2d(kernel_size=2), # 卷积 nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2), # 最大池化 nn.MaxPool2d(kernel_size=2), # 卷积 nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2), # 最大池化 nn.MaxPool2d(kernel_size=2), # 展平 nn.Flatten(), # 线性层 nn.Linear(in_features=64 * 4 * 4, out_features=64), nn.Linear(in_features=64, out_features=10) ) def forward(self, x): return self.model(x)

2.验证搭建网络的正确性

if __name__ == '__main__': # 测试网络的验证正确性 tudui = Tudui() input = torch.ones((64,3,32,32)) # batch_size=64(代表64张图片),3通道,32x32 output = tudui(input) print(output.shape)

结果是

torch.Size([64,10])

返回64行数据,每一行10个数据,代表每一张图片的概率。

3.在train.py下

①准备数据集,一个训练数据集,一个测试数据集。因为CIFAR10数据集是PIL,要转为tensor数据类型。

train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True)test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True)

②加载数据集。利用DataLoader加载数据集。

train_dataloader = DataLoader(dataset=train_data, batch_size=64)test_dataloader = DataLoader(dataset=test_data, batch_size=64)

③创建网络模型

from model import * wang = net()

模型训练步骤(模型训练的过程是什么过程)

④创建损失函数

loss_fn = nn.CrossEntropyLoss()

⑤创建优化器

learning_rate = 0.01optimizer = torch.optim.SGD(params=wang.parameters(), lr=learning_rate)

⑥设置网络训练参数

# 设置训练网络的一些参数# 记录训练次数total_train_step = 0# 记录测试的次数total_test_step = 0# 训练的轮数epoch = 10

⑦开始训练

for i in range(epoch): print("----------第{}轮训练开始-----------".format(i+1)) # i从0-9 # 训练步骤开始 for data in train_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 优化器优化模型 optimizer.zero_grad() # 首先要梯度清零 loss.backward() # 反向传播得到每一个参数节点的梯度 optimizer.step() # 对参数进行优化 total_train_step += 1 print("训练次数:{},loss:{}".format(total_train_step,loss.item()))

【补充:】

import torcha = torch.tensor(5)print(a)print(a.item())

输出:

tensor(5)

5.【测试】:看模型是否训练好。

每次训练完进行一轮测试,看测试集的损失或者正确率评估模型是否训练好。

测试过程模型不需要调优,利用现有的模型测试。

with torch.no_grad():

6.在上述代码继续编写

# 测试步骤开始 total_test_loss = 0 with torch.no_grad(): # 无梯度,不进行调优 for data in test_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 该loss为部分数据在网络模型上的损失,为tensor数据类型 # 求整体测试数据集上的误差或正确率 total_test_loss = total_test_loss + loss.item() # loss为tensor数据类型,而total_test_loss为普通数字 print("整体测试集上的Loss:{}".format(total_test_loss))

7.跟TensorbBoard相结合

import torchvision.datasetsfrom torch.utils.tensorboard import SummaryWriterfrom model import *from torch import nnfrom torch.utils.data import DataLoader# 准备数据集,CIFAR10 数据集是PIL Image,要转换为tensor数据类型train_data = torchvision.datasets.CIFAR10(root="../data",train=True,transform=torchvision.transforms.ToTensor(),download=True)test_data = torchvision.datasets.CIFAR10(root="../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)# 看一下训练数据集和测试数据集都有多少张(如何获得数据集的长度)train_data_size = len(train_data) # length 长度test_data_size = len(test_data)# 如果train_data_size=10,那么打印出的字符串为:训练数据集的长度为:10print("训练数据集的长度为:{}".format(train_data_size)) # 字符串格式化,把format中的变量替换{}print("测试数据集的长度为:{}".format(test_data_size))# 利用 DataLoader 来加载数据集train_dataloader = DataLoader(train_data,batch_size=64)test_dataloader = DataLoader(test_data,batch_size=64)# 创建网络模型tudui = Tudui()# 创建损失函数loss_fn = nn.CrossEntropyLoss() # 分类问题可以用交叉熵# 定义优化器learning_rate = 0.01 # 另一写法:1e-2,即1x 10^(-2)=0.01optimizer = torch.optim.SGD(tudui.parameters(),lr=learning_rate) # SGD 随机梯度下降# 设置训练网络的一些参数total_train_step = 0 # 记录训练次数total_test_step = 0 # 记录测试次数epoch = 10 # 训练轮数# 添加tensorboardwriter = SummaryWriter("../logs_train")for i in range(epoch): print("----------第{}轮训练开始-----------".format(i+1)) # i从0-9 # 训练步骤开始 for data in train_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 优化器优化模型 optimizer.zero_grad() # 首先要梯度清零 loss.backward() # 反向传播得到每一个参数节点的梯度 optimizer.step() # 对参数进行优化 total_train_step += 1 if total_train_step % 100 ==0: # 逢百才打印记录 print("训练次数:{},loss:{}".format(total_train_step,loss.item())) writer.add_scalar("train_loss",loss.item(),total_train_step) # 测试步骤开始 total_test_loss = 0 with torch.no_grad(): # 无梯度,不进行调优 for data in test_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 该loss为部分数据在网络模型上的损失,为tensor数据类型 # 求整体测试数据集上的误差或正确率 total_test_loss = total_test_loss + loss.item() # loss为tensor数据类型,而total_test_loss为普通数字 print("整体测试集上的Loss:{}".format(total_test_loss)) writer.add_scalar("test_loss",total_test_loss,total_test_step) total_test_step += 1writer.close()

保存模型:

torch.save(tudui,"tudui_{}.pth".format(i)) # 每一轮保存一个结果 print("模型已保存")writer.close()

【代码优化,提升正确率】

# 求整体测试数据集上的误差或正确率 accuracy = (outputs.argmax(1) == targets).sum() # 1:横向比较,==:True或False,sum:计算True或False个数 total_accuracy = total_accuracy + accuracy print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size)) # 正确率为预测对的个数除以测试集长度 writer.add_scalar("test_accuracy",total_test_loss,total_test_step,total_test_step)

【完整代码】

import torchimport torchvision.datasetsfrom torch.utils.tensorboard import SummaryWriterfrom model import *from torch import nnfrom torch.utils.data import DataLoader# 准备数据集,CIFAR10 数据集是PIL Image,要转换为tensor数据类型train_data = torchvision.datasets.CIFAR10(root="../data",train=True,transform=torchvision.transforms.ToTensor(),download=True)test_data = torchvision.datasets.CIFAR10(root="../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)# 看一下训练数据集和测试数据集都有多少张(如何获得数据集的长度)train_data_size = len(train_data) # length 长度test_data_size = len(test_data)# 如果train_data_size=10,那么打印出的字符串为:训练数据集的长度为:10print("训练数据集的长度为:{}".format(train_data_size)) # 字符串格式化,把format中的变量替换{}print("测试数据集的长度为:{}".format(test_data_size))# 利用 DataLoader 来加载数据集train_dataloader = DataLoader(train_data,batch_size=64)test_dataloader = DataLoader(test_data,batch_size=64)# 创建网络模型tudui = Tudui()# 创建损失函数loss_fn = nn.CrossEntropyLoss() # 分类问题可以用交叉熵# 定义优化器learning_rate = 0.01 # 另一写法:1e-2,即1x 10^(-2)=0.01optimizer = torch.optim.SGD(tudui.parameters(),lr=learning_rate) # SGD 随机梯度下降# 设置训练网络的一些参数total_train_step = 0 # 记录训练次数total_test_step = 0 # 记录测试次数epoch = 10 # 训练轮数# 添加tensorboardwriter = SummaryWriter("../logs_train")for i in range(epoch): print("----------第{}轮训练开始-----------".format(i+1)) # i从0-9 # 训练步骤开始 for data in train_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 优化器优化模型 optimizer.zero_grad() # 首先要梯度清零 loss.backward() # 反向传播得到每一个参数节点的梯度 optimizer.step() # 对参数进行优化 total_train_step += 1 if total_train_step % 100 ==0: # 逢百才打印记录 print("训练次数:{},loss:{}".format(total_train_step,loss.item())) writer.add_scalar("train_loss",loss.item(),total_train_step) # 测试步骤开始 total_test_loss = 0 total_accuracy = 0 with torch.no_grad(): # 无梯度,不进行调优 for data in test_dataloader: imgs,targets = data outputs = tudui(imgs) loss = loss_fn(outputs,targets) # 该loss为部分数据在网络模型上的损失,为tensor数据类型 # 求整体测试数据集上的误差或正确率 total_test_loss = total_test_loss + loss.item() # loss为tensor数据类型,而total_test_loss为普通数字 accuracy = (outputs.argmax(1) == targets).sum() # 1:横向比较,==:True或False,sum:计算True或False个数 total_accuracy = total_accuracy + accuracy print("整体测试集上的Loss:{}".format(total_test_loss)) print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size)) # 正确率为预测对的个数除以测试集长度 writer.add_scalar("test_loss",total_test_loss,total_test_step) writer.add_scalar("test_accuracy",total_test_loss,total_test_step,total_test_step) total_test_step += 1 torch.save(tudui,"tudui_{}.pth".format(i)) # 每一轮保存一个结果 print("模型已保存")writer.close()
本文链接地址:https://www.jiuchutong.com/zhishi/298395.html 转载请保留说明!

上一篇:8种css居中实现的详细实现方式了(css各种居中)

下一篇:JavaWeb 项目 --- 表白墙 和 在线相册(javaweb项目开发流程)

  • 我国流转税的税种有哪些
  • 公司纳税证明怎么开
  • 业务宣传费和广告费的扣除标准
  • 服务不动产和无形资产扣除项目本期实际扣除金额
  • 政府补贴需要缴纳企业所得税吗
  • 洗车费怎么做会计分录
  • 税务局未核定的印花税
  • 车船税在备注栏怎么报表
  • 开票信息中电话号码变更
  • 小企业会计准则和企业会计准则的区别
  • 受赠房产转让可以免个税
  • 机票退票账务处理
  • 融资租入固定资产属于资产吗
  • 团队接待的程序及标准
  • 公司工资发放错误怎么退回
  • 投资公司收到的发票
  • 房屋租赁发票是什么意思
  • 合同中止发票已入账怎么处理?
  • 如何区分劳务派遣和劳动合同
  • 人力资源外包服务收费标准
  • 出口已使用过的设备退税吗
  • 销货成本销货成本是什么类账户
  • 个人转让股权的合理费用都有哪些
  • 冲减材料成本
  • 哪些费用可以做研发费用
  • bios里硬盘是哪个
  • 销售折扣单独开票
  • 社保缴纳方式怎么填
  • mac系统屏幕
  • Win11安卓子系统怎么安装apk
  • php中cookie的值存储在哪
  • 结转待抵扣
  • 公司备用金申请单
  • 进口货物完税价格怎么算
  • 总公司下的分公司如何做账
  • mysql刷新数据
  • 回顾2021年作文
  • 《设计模式》
  • vector 底层原理
  • 赠送礼品账务处理会计分录
  • 发票勾选认证具体流程
  • 当月扣缴的社保是上个月的吗
  • 城建税退回怎么做分录
  • phpcms v9 getshell
  • 不需要开发票的现金收入怎么做内账?
  • Python IDE之Thonny的介绍
  • python 函数 global
  • mongodb基本操作命令
  • 大学生创新创业平台
  • 增值税发票用完后如何领取新的
  • 质量扣款可以放到费用吗
  • 未分配利润分配后在报表如何体现
  • 本月开发票下月收款
  • 公司注销其他应付款怎么冲平
  • 视同内销账务处理怎么做?
  • 企业投资分红帐务处理?
  • 企业个人工资薪金换了电脑怎么能导得出来
  • 加盟费收入需要纳税吗
  • 工资达不到5000个人所得税
  • 房地产开发费用10%
  • record关键字
  • 修改注册表解决画面撕裂
  • ubuntu20.04 u盘
  • 魔方优化大师是免费的吗
  • win7开机过程中黑屏
  • ubuntu unity8
  • 手机苹果操作系统
  • centos直接安装
  • linux 命令连接
  • 电脑预装软件是什么意思
  • 绘制多边形工具使用方法
  • Node.js中的核心模块包括哪些内容?
  • 利用的近义词
  • 简述matlab中控制系统的数学描述类型
  • shell中的-n
  • java script教程
  • 上海自贸区税务大厅地址
  • 进境邮件补充申请
  • 生活费需要缴纳什么税
  • 公司借款给员工是否合法
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设