位置: IT常识 - 正文

机器学习中的预测评价指标MSE、RMSE、MAE、MAPE、SMAPE

编辑:rootadmin
机器学习中的预测评价指标MSE、RMSE、MAE、MAPE、SMAPE

推荐整理分享机器学习中的预测评价指标MSE、RMSE、MAE、MAPE、SMAPE,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

💖作者简介:大家好,我是车神哥,府学路18号的车神🥇 ⚡About—>车神:从寝室到实验室最快3分钟,最慢3分半(那半分钟其实是等红绿灯) 📝个人主页:应无所住而生其心的博客_府学路18号车神_CSDN博客 🎉点赞➕评论➕收藏 == 养成习惯(一键三连)😋 📖本系列主要以学习Go语言打怪升级为标准,实现自我能力的提升为目标⚡ ⚡希望大家多多支持🤗~一起加油 😁

专栏

《Golang · 过关斩将》

《Neural Network》

《LeetCode天梯》

《Algorithm》

《Python》

《web》

预测评价指标背景均方误差(MSE)均方根误差(RMSE)平均绝对误差(MAE)平均绝对百分比误差(MAPE)对称平均绝对百分比误差(SMAPE)

最近论文在写关于极限学习机ELM的相关内容,在机器学习中有很重要的一点就是评级指标,这是判断你的算法性能很重要的、很有必要的一个评判标准,下面我们就一起来看看有哪些评价指标吧!~

背景

机器学习中,一般是对输出值,具体也就是对预测值 Y^\hat YY 和真实值 YYY 进行评价,利用以下的评价指标来表现预测和真实之间的差距,误差越小说明效果越好,性能越好!~

这里我们假设: Y^={y^1,y^2,...,y^n}−−预测值\hat{Y}=\{\hat{y}_1,\hat{y}_2,...,\hat{y}_n\}--预测值Y={y​1​,y​2​,...,y​n​}−−预测值

Y={y1,y2,...,yn}−−预测值{Y}=\{{y}_1,{y}_2,...,{y}_n\}--预测值Y={y1​,y2​,...,yn​}−−预测值

均方误差(MSE)

均方误差(Mean Square Error,MSE),反映估计量与被估计量之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的数学期望,称为估计量t的均方误差。它等于σ2+b2,其中σ2与b分别是t的方差与偏倚。

MSE

MSE计算公式: MSE=1n∑i=1n(y^i−yi)2{MSE}=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}MSE=n1​i=1∑n​(y​i​−yi​)2

解释:

范围[0,+∞),当预测值与真实值完全吻合时等于0,即完美模型;误差越大,该值越大。 总而言之,值越小,机器学习网络模型越精确,相反,则越差。

均方根误差(RMSE)

均方根误差(Root Mean Square Error,RMSE),从名称来看,我们都能猜得到是什么意思。多了一个根,这个“根”的意思顾名思义,就只是加了个根号。均方根误差是预测值与真实值偏差的平方与观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替。

RMSE的计算公式: RMSE=1n∑i=1n(y^i−yi)2RMSE=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}}RMSE=n1​i=1∑n​(y​i​−yi​)2​

解释:

它的计算方法是先平方、再平均、然后开方。均方根误差是用来衡量观测值同真值之间的偏差。和MSE同理,当我们的预测值和真实值之间的差距越小,模型精度越高;相反,则越低。

平均绝对误差(MAE)机器学习中的预测评价指标MSE、RMSE、MAE、MAPE、SMAPE

平均绝对误差(Mean Absolute Error,MAE),绝对偏差平均值即平均偏差,指各次测量值的绝对偏差绝对值的平均值。平均绝对误差可以避免误差相互抵消的问题,因而可以准确反映实际预测误差的大小。

MAE

MAE计算公式: MAE=1n∑i=1n∣y^i−yi∣M A E=\frac{1}{n} \sum_{i=1}^{n}\left|\hat{y}_{i}-y_{i}\right|MAE=n1​i=1∑n​∣y​i​−yi​∣

解释:

范围[0,+∞),和MSE、RMSE类似,当预测值和真实值的差距越小,则模型越好;相反则越差。

平均绝对百分比误差(MAPE)

平均绝对百分比误差(Mean Absolute Percentage Error,MAPE),平均绝对百分比误差之所以可以描述准确度是因为平均绝对百分比误差本身常用于衡量预测准确性的统计指标,如时间序列的预测。

计算公式: MAPE=100%n∑i=1n∣y^i−yiyi∣M A P E=\frac{100 \%}{n} \sum_{i=1}^{n}\left|\frac{\hat{y}_{i}-y_{i}}{y_{i}}\right|MAPE=n100%​i=1∑n​∣∣∣∣​yi​y​i​−yi​​∣∣∣∣​

解释:

和上面的MAE相比,在预测值和真实值的差值下面分母多了一项,除以真实值。 范围[0,+∞),MAPE 为0%表示完美模型,MAPE 大于 100 %则表示劣质模型。

需要注意的一点!!!

当真实值有数据等于0时,存在分母0除问题,该公式不可用!

对称平均绝对百分比误差(SMAPE)

对称平均绝对百分比误差(Symmetric Mean Absolute Percentage Error,SMAPE)

SMAPE计算公式为: SMAPE=100%n∑i=1n∣y^i−yi∣(∣y^i∣+∣yi∣)/2S M A P E=\frac{100 \%}{n} \sum_{i=1}^{n} \frac{\left|\hat{y}_{i}-y_{i}\right|}{\left(\left|\hat{y}_{i}\right|+\left|y_{i}\right|\right) / 2}SMAPE=n100%​i=1∑n​(∣y​i​∣+∣yi​∣)/2∣y​i​−yi​∣​

解释:

与MAPE相比,加了对称,其实就是将分母变为了真实值和预测值的中值。和MAPE的用法一样,范围[0,+∞),MAPE 为0%表示完美模型,MAPE 大于 100 %则表示劣质模型。

同样,值得注意的一点!!!

当真实值有数据等于0,而预测值也等于0时,存在分母0除问题,该公式不可用!

这里也给出一下Python代码:

#!/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2021/12/21 15:05# @Author : 府学路18号车神# @Email :yurz_control@163.com# @File : Evaluation_index.pyimport numpy as npfrom sklearn import metrics# 将sklearn的也封装一下吧# MSEdef mse(y_true, y_pred): res_mse = metrics.mean_squared_error(y_true, y_pred) return res_mse# RMSEdef rmse(y_true, y_pred): res_rmse = np.sqrt(metrics.mean_squared_error(y_true, y_pred)) return res_rmse# MAEdef mae(y_true, y_pred): res_mae = metrics.mean_absolute_error(y_true, y_pred) return res_mae# sklearn的库中没有MAPE和SMAPE,下面根据公式给出算法实现# MAPEdef mape(y_true, y_pred): res_mape = np.mean(np.abs((y_pred - y_true) / y_true)) * 100 return res_mape# SMAPEdef smape(y_true, y_pred): res_smape = 2.0 * np.mean(np.abs(y_pred - y_true) / (np.abs(y_pred) + np.abs(y_true))) * 100 return res_smape# mainif __name__=='__main__': # 由于没有用模型,这里就随机出几个值来测试下吧 y_true = np.random.random(10) print(y_true) y_pred = np.random.random(10) print(y_pred) # MSE print(mse(y_true, y_pred)) # RMSE print(rmse(y_true, y_pred)) # MAE print(mae(y_true, y_pred)) # MAPE print(mape(y_true, y_pred)) # 得到的值直接看成百分比即可 # SMAPE print(smape(y_true, y_pred)) # 得到的值直接看成百分比即可

❤坚持读Paper,坚持做笔记,坚持学习,坚持刷力扣LeetCode❤!!! 坚持刷题!!!打天梯!!! ⚡To Be No.1

⚡⚡哈哈哈哈

⚡创作不易⚡,过路能❤关注、收藏、点个赞❤三连就最好不过了

ღ( ´・ᴗ・` )

『 只是相谈就会开心起来,沉浸在温柔的眼神当中,竭尽全力的思念,悄悄地奉献。 』

本文链接地址:https://www.jiuchutong.com/zhishi/298468.html 转载请保留说明!

上一篇:Vue自定义指令(含常用8种指令封装)(vue自定义指令生命周期)

下一篇:NLP进阶,Bert+BiLSTM情感分析实战(nlp baseline)

  • 房屋出租需要交税多少起征
  • 小规模纳税人取得专票和普票区别
  • 税前利润计算公式变动成本法
  • 消费税的会计处理分录
  • 企业出售房产要交哪些税
  • 应交增值税减免税款
  • 以房抵顶工程款有效吗
  • 土地增值税清算是什么意思
  • 购买商标权税率多少
  • 当月确认收入下月开票
  • 不开票不走公账的后果
  • 地产企业不动产登记入哪个科目?
  • 加计扣除10%进项税账务处理 如何填表
  • 营业执照办理流程需要多久
  • 公司账上没车可以报车辆保险吗
  • 企业所得税季度预缴可以弥补以前年度亏损吗
  • 凭证金额多记了,已经入账了怎么办
  • centos7安装部署cacti教程
  • 材料采购差异的影响因素
  • 四种存款账户的定义
  • 应付账款暂估借方余额怎么处理
  • 银行自动扣费用是什么
  • 在当前目录下打开cmd
  • 学php的书
  • php mysql_real_escape_string函数用法与实例教程
  • 辞退补偿金额怎么做账
  • 研发专利什么意思
  • 购买免税农产品可以抵扣进项税
  • html可以描述什么
  • 工会经费是如何计提的
  • video.js能播放什么格式
  • php实现验证码
  • php7.4配置
  • php 统计
  • 毕业设计基于web难还是JAVA
  • php类型约束用法有哪些
  • 终止pppoe会话
  • 金融机构贷款准备金
  • 尚未进行抄报税无法申报是什么意思
  • 电子发票报税怎么操作
  • 小型微利企业享所得税优惠
  • 企业所得税预缴纳税申报表
  • mysql存储过程 游标
  • 承兑汇票可以当现金借给别人用吗
  • 根据工资总额组成的规定下列哪些列入工资总额的范围
  • sql死锁的简单例子
  • 金税四期怎么监控个人账号
  • 固定资产接受捐赠的条件
  • 应付账款预付账款应收账款预收账款
  • 个体户是什么概念
  • 接受非货币性资产投资入账价值
  • 房屋租赁怎么干
  • 项目对公司的战略意义
  • 收到的出口退税款需要并入利润总额吗
  • 银行承兑汇票向银行申请贴现会计分录
  • 现金流量补充表的应付项目是什么
  • 应收账款坏账准备借贷方向
  • 企业提取盈余公积的比例
  • 备用金如何管理制度
  • 剩余股利政策发放股利后的年末未分配利润
  • mysql格式化日期yyyy/mm/dd
  • w10 2021年更新
  • solaris安装软件
  • 如何使用xp
  • linux config
  • Win10 Mobile 10586.107怎么更新?Lumia950/XL/550可升级
  • layui框架中修改用户成功后怎么跳转到登录界面
  • java的理解
  • 安卓游戏引擎
  • ftp下载怎么用
  • python怎么学啊
  • perl和shell的区别
  • 什么叫真游戏
  • bootstrap范例
  • Android调用jni获取mac地址
  • jquery基础知识梳理
  • 怎么看上期留抵税额
  • 如何做好税务局长
  • 税务局科员是什么职业
  • 一般纳税人办理退税流程及手续
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设