位置: IT常识 - 正文

机器学习中的预测评价指标MSE、RMSE、MAE、MAPE、SMAPE

编辑:rootadmin
机器学习中的预测评价指标MSE、RMSE、MAE、MAPE、SMAPE

推荐整理分享机器学习中的预测评价指标MSE、RMSE、MAE、MAPE、SMAPE,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

💖作者简介:大家好,我是车神哥,府学路18号的车神🥇 ⚡About—>车神:从寝室到实验室最快3分钟,最慢3分半(那半分钟其实是等红绿灯) 📝个人主页:应无所住而生其心的博客_府学路18号车神_CSDN博客 🎉点赞➕评论➕收藏 == 养成习惯(一键三连)😋 📖本系列主要以学习Go语言打怪升级为标准,实现自我能力的提升为目标⚡ ⚡希望大家多多支持🤗~一起加油 😁

专栏

《Golang · 过关斩将》

《Neural Network》

《LeetCode天梯》

《Algorithm》

《Python》

《web》

预测评价指标背景均方误差(MSE)均方根误差(RMSE)平均绝对误差(MAE)平均绝对百分比误差(MAPE)对称平均绝对百分比误差(SMAPE)

最近论文在写关于极限学习机ELM的相关内容,在机器学习中有很重要的一点就是评级指标,这是判断你的算法性能很重要的、很有必要的一个评判标准,下面我们就一起来看看有哪些评价指标吧!~

背景

机器学习中,一般是对输出值,具体也就是对预测值 Y^\hat YY 和真实值 YYY 进行评价,利用以下的评价指标来表现预测和真实之间的差距,误差越小说明效果越好,性能越好!~

这里我们假设: Y^={y^1,y^2,...,y^n}−−预测值\hat{Y}=\{\hat{y}_1,\hat{y}_2,...,\hat{y}_n\}--预测值Y={y​1​,y​2​,...,y​n​}−−预测值

Y={y1,y2,...,yn}−−预测值{Y}=\{{y}_1,{y}_2,...,{y}_n\}--预测值Y={y1​,y2​,...,yn​}−−预测值

均方误差(MSE)

均方误差(Mean Square Error,MSE),反映估计量与被估计量之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的数学期望,称为估计量t的均方误差。它等于σ2+b2,其中σ2与b分别是t的方差与偏倚。

MSE

MSE计算公式: MSE=1n∑i=1n(y^i−yi)2{MSE}=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}MSE=n1​i=1∑n​(y​i​−yi​)2

解释:

范围[0,+∞),当预测值与真实值完全吻合时等于0,即完美模型;误差越大,该值越大。 总而言之,值越小,机器学习网络模型越精确,相反,则越差。

均方根误差(RMSE)

均方根误差(Root Mean Square Error,RMSE),从名称来看,我们都能猜得到是什么意思。多了一个根,这个“根”的意思顾名思义,就只是加了个根号。均方根误差是预测值与真实值偏差的平方与观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替。

RMSE的计算公式: RMSE=1n∑i=1n(y^i−yi)2RMSE=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}}RMSE=n1​i=1∑n​(y​i​−yi​)2​

解释:

它的计算方法是先平方、再平均、然后开方。均方根误差是用来衡量观测值同真值之间的偏差。和MSE同理,当我们的预测值和真实值之间的差距越小,模型精度越高;相反,则越低。

平均绝对误差(MAE)机器学习中的预测评价指标MSE、RMSE、MAE、MAPE、SMAPE

平均绝对误差(Mean Absolute Error,MAE),绝对偏差平均值即平均偏差,指各次测量值的绝对偏差绝对值的平均值。平均绝对误差可以避免误差相互抵消的问题,因而可以准确反映实际预测误差的大小。

MAE

MAE计算公式: MAE=1n∑i=1n∣y^i−yi∣M A E=\frac{1}{n} \sum_{i=1}^{n}\left|\hat{y}_{i}-y_{i}\right|MAE=n1​i=1∑n​∣y​i​−yi​∣

解释:

范围[0,+∞),和MSE、RMSE类似,当预测值和真实值的差距越小,则模型越好;相反则越差。

平均绝对百分比误差(MAPE)

平均绝对百分比误差(Mean Absolute Percentage Error,MAPE),平均绝对百分比误差之所以可以描述准确度是因为平均绝对百分比误差本身常用于衡量预测准确性的统计指标,如时间序列的预测。

计算公式: MAPE=100%n∑i=1n∣y^i−yiyi∣M A P E=\frac{100 \%}{n} \sum_{i=1}^{n}\left|\frac{\hat{y}_{i}-y_{i}}{y_{i}}\right|MAPE=n100%​i=1∑n​∣∣∣∣​yi​y​i​−yi​​∣∣∣∣​

解释:

和上面的MAE相比,在预测值和真实值的差值下面分母多了一项,除以真实值。 范围[0,+∞),MAPE 为0%表示完美模型,MAPE 大于 100 %则表示劣质模型。

需要注意的一点!!!

当真实值有数据等于0时,存在分母0除问题,该公式不可用!

对称平均绝对百分比误差(SMAPE)

对称平均绝对百分比误差(Symmetric Mean Absolute Percentage Error,SMAPE)

SMAPE计算公式为: SMAPE=100%n∑i=1n∣y^i−yi∣(∣y^i∣+∣yi∣)/2S M A P E=\frac{100 \%}{n} \sum_{i=1}^{n} \frac{\left|\hat{y}_{i}-y_{i}\right|}{\left(\left|\hat{y}_{i}\right|+\left|y_{i}\right|\right) / 2}SMAPE=n100%​i=1∑n​(∣y​i​∣+∣yi​∣)/2∣y​i​−yi​∣​

解释:

与MAPE相比,加了对称,其实就是将分母变为了真实值和预测值的中值。和MAPE的用法一样,范围[0,+∞),MAPE 为0%表示完美模型,MAPE 大于 100 %则表示劣质模型。

同样,值得注意的一点!!!

当真实值有数据等于0,而预测值也等于0时,存在分母0除问题,该公式不可用!

这里也给出一下Python代码:

#!/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2021/12/21 15:05# @Author : 府学路18号车神# @Email :yurz_control@163.com# @File : Evaluation_index.pyimport numpy as npfrom sklearn import metrics# 将sklearn的也封装一下吧# MSEdef mse(y_true, y_pred): res_mse = metrics.mean_squared_error(y_true, y_pred) return res_mse# RMSEdef rmse(y_true, y_pred): res_rmse = np.sqrt(metrics.mean_squared_error(y_true, y_pred)) return res_rmse# MAEdef mae(y_true, y_pred): res_mae = metrics.mean_absolute_error(y_true, y_pred) return res_mae# sklearn的库中没有MAPE和SMAPE,下面根据公式给出算法实现# MAPEdef mape(y_true, y_pred): res_mape = np.mean(np.abs((y_pred - y_true) / y_true)) * 100 return res_mape# SMAPEdef smape(y_true, y_pred): res_smape = 2.0 * np.mean(np.abs(y_pred - y_true) / (np.abs(y_pred) + np.abs(y_true))) * 100 return res_smape# mainif __name__=='__main__': # 由于没有用模型,这里就随机出几个值来测试下吧 y_true = np.random.random(10) print(y_true) y_pred = np.random.random(10) print(y_pred) # MSE print(mse(y_true, y_pred)) # RMSE print(rmse(y_true, y_pred)) # MAE print(mae(y_true, y_pred)) # MAPE print(mape(y_true, y_pred)) # 得到的值直接看成百分比即可 # SMAPE print(smape(y_true, y_pred)) # 得到的值直接看成百分比即可

❤坚持读Paper,坚持做笔记,坚持学习,坚持刷力扣LeetCode❤!!! 坚持刷题!!!打天梯!!! ⚡To Be No.1

⚡⚡哈哈哈哈

⚡创作不易⚡,过路能❤关注、收藏、点个赞❤三连就最好不过了

ღ( ´・ᴗ・` )

『 只是相谈就会开心起来,沉浸在温柔的眼神当中,竭尽全力的思念,悄悄地奉献。 』

本文链接地址:https://www.jiuchutong.com/zhishi/298468.html 转载请保留说明!

上一篇:Vue自定义指令(含常用8种指令封装)(vue自定义指令生命周期)

下一篇:NLP进阶,Bert+BiLSTM情感分析实战(nlp baseline)

  • 增值税发票综合服务平台错误代码35
  • 个人所得税 补觉
  • 消费税组成计税价格怎么理解
  • 预算会计退回预付差旅费如何记账?
  • 国债收益率如何定价
  • 劳务分包人是实际施工人吗
  • 交易性金融资产和其他权益工具投资的区别
  • 公户购买理财怎么做账
  • 利润表中财务费用为负数是什么意思
  • 物流企业账务流程
  • 单品毛利计算公式怎么算
  • 将自产产品赠送他人
  • 借给股东的借款怎么做账
  • 股东用技术股出售股票
  • 增值税专票电话号码错了有关系吗
  • 新办企业国税报税时间
  • 客户忠诚度的表现行为有哪些
  • 物资包括材料吗
  • 企业微信收入也要交税吗
  • 减免教育费附加和地方教育费附加账务处理
  • 跨年收入能开发票吗
  • 房地产预缴税金附加可以计提吗
  • 小额纳税人增值税专用发票税率1%
  • 一般纳税人购买原材料会计分录
  • 土地使用权评估中的成本法
  • 实收资本是认缴出资吗
  • 替换重置的设备更新应考虑
  • 挂社保不发工资
  • 苹果手机微信怎么迁移聊天记录到新手机
  • win11镜像文件怎么复制到系统U盘
  • linux使用范围
  • wordpress功能介绍
  • 乐观锁用法
  • js删除对象的方法
  • 餐饮固定成本怎么算的
  • 去年计提的费用所得税汇算清缴之前冲销就不调整吗
  • 股东投资款怎么存入公司
  • 物业收取停车费需要业主同意吗
  • 网络课平台用交税吗
  • 公司的日常费用包括哪些
  • 个人所得税如何查询
  • 手工账结转
  • 物业管理费开票类目
  • 价税合计公式分配
  • 织梦商城网站源码
  • 企业季度是如何对账
  • 上月发票冲红后怎么作废
  • 增值税期末留抵税额是什么意思
  • 增值税起征点有多少
  • 出口样品的销售好做吗
  • 锅炉设备销售
  • 工程类发票账务后面需附什么单据呢
  • 存货期末报表列示
  • 会计账簿按用途分类分为什么
  • 拨开层层迷雾是什么歌
  • win7 双击不能打开文件
  • ie11安装方法
  • centos启动卡在了启动界面
  • RAVMOND.exe - RAVMOND是什么进程.有什么作用
  • windows8.1开始
  • linux系统的介绍
  • window7系统清理
  • win 10移动版
  • win8 应用商店
  • perl中qw
  • eclipse awt
  • jquerymobile
  • 获取本地ip地址失败
  • 安卓api中文手册
  • Unity3D Vuforia Android 相机调焦
  • jquery正则表达式的用法
  • cocos2dx:C++层通过JniHelper调用JAVA层代码进而调用Android手机应用接口
  • python修改图片背景
  • java script入门
  • 用电稽查工作总结
  • 内蒙古国地税联合网厅
  • 辽宁省地方税务局公告2014年第10号
  • 到税务局领购免税产品
  • 深圳税务局完税证明
  • 发生技术入股递增怎么办
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设