位置: IT常识 - 正文
推荐整理分享【运筹优化】带时间窗约束的车辆路径规划问题(VRPTW)详解 + Python 调用 Gurobi 建模求解(运筹最优化方法有哪些),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:运筹优化前景,运筹优化常用模型、算法及案例实战,运筹优化与决策方法,运筹优化方法,运筹优化软件有哪些,运筹优化是什么意思,运筹优化是什么意思,运筹优化问题实例,内容如对您有帮助,希望把文章链接给更多的朋友!
车辆路径规划问题(Vehicle Routing Problem,VRP)一般指的是:对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下(例如:货物的需求量与发货量,交发货时间,车辆容量限制,行驶里程限制,行驶时间限制等),力争实现一定的目标(如车辆空驶总里程最短,运输总费用最低,车辆按一定时间到达,使用的车辆数最小等)。
下图给出了一个简单的VRP的例子
1.2 CVRP 问题最基本的VRP问题叫做带容量约束的车辆路径规划问题(Capacitated Vehicle Routing Problem,CVRP)。在CVRP中,需要考虑每辆车的容量约束、车辆的路径约束和装载量约束
1.3 VRPTW 问题为了考虑配送时间要求,带时间窗的车辆路径规划问题(Vehicle Routing Problem with Time Window,VRPTW)应运而生。
VRPTW 不仅考虑CVRP的所有约束,还需要考虑时间窗约束,也就是每个顾客对应一个时间窗[ei,li][e_i,l_i][ei,li],其中 eie_iei 和 lil_ili 分别代表该点的最早到达时间和最晚到达时间。顾客点 i∈Vi \in Vi∈V 的需求必须要在其时间窗内被送达
VRPTW 已经被证明是 NP-hard 问题,其求解复杂度随着问题规模的增加而急剧增加,求解较为困难。到目前为止,求解 VRPTW 的比较高效的精确算法是分支定价算法和分支定价切割算法。
二、VRPTW 的一般模型VRPTW 可以建模为一个混合整数规划问题,在给出完整数学模型之前,先引入下面的决策变量:
xij={1,如果在最优解中,弧(i,j)被车辆k选中,其他sik=车辆k到达i的时间模型中涉及的其他参数为:tij表示车辆在弧(i,j)上的行驶时间M为一个足够大的正数{x_i}_j=\begin{cases} 1\text{,如果在最优解中,弧}\left( i,j \right) \text{被车辆}k\text{选中}\\ 0\text{,其他}\\ \end{cases} \\ {s_i}_k=\text{车辆}k\text{到达}i\text{的时间} \\ \text{模型中涉及的其他参数为}: \\ {t_i}_j\text{表示车辆在弧}\left( i,j \right) \text{上的行驶时间} \\ M\text{为一个足够大的正数}xij={1,如果在最优解中,弧(i,j)被车辆k选中0,其他sik=车辆k到达i的时间模型中涉及的其他参数为:tij表示车辆在弧(i,j)上的行驶时间M为一个足够大的正数
关于M的取值,实际上可以直接取非常大的正数,但是为了提高求解效率,拉紧约束。我们可以采用下面的取值方法:
M=max{bi+tij−aj},∀(i,j)∈AM=max\{b_i+t_{ij}-a_j\} , \forall (i,j)\in AM=max{bi+tij−aj},∀(i,j)∈A
综合上面引出的决策变量,并参考文献(Desaulniers et al.,2006),给出的 VRPTW 的标准模型如下:
min∑k∈K∑i∈V∑i∈Vcijxijks.t.∑k∈K∑j∈Vxijk=1,∀i∈C ∑j∈Vxjk=1,∀k∈K ∑i∈Vxihk−∑j∈Vxhjk=,∀h∈C,∀k∈K ∑i∈Vxi,n+1,k=1,∀k∈K ∑i∈Cqi∑j∈Vxijk=1,∀k∈K sik+tij−M(1−xijk)⩽sjk ,∀(i,j)∈A,∀k∈K ei⩽sik⩽li ,∀i∈V,∀k∈K xijk∈{,1} ,∀(i,j)∈A,∀k∈K\min \sum_{k\in K}{\sum_{i\in V}{\sum_{i\in V}{{c_i}_j{x_i}_{j_k}}}} \\ s.t. \sum_{k\in K}{\sum_{j\in V}{{x_i}_{j_k}=1 , \forall i\in C}} \\ \,\, \sum_{j\in V}{{x_0}_{j_k}=1 , \forall k\in K} \\ \,\, \sum_{i\in V}{{x_i}_{h_k}-\sum_{j\in V}{{x_h}_{j_k}=0 , \forall h\in C,\forall k\in K}} \\ \,\, \sum_{i\in V}{x_{i,n+1,k}=1 , \forall k\in K} \\ \,\, \sum_{i\in C}{q_i\sum_{j\in V}{{x_i}_{j_k}=1 , \forall k\in K}} \\ \,\, {s_i}_k+{t_i}_j-M\left( 1-{x_i}_{j_k} \right) \leqslant {s_j}_k\,\,, \forall \left( i,j \right) \in A,\forall k\in K \\ \,\, e_i\leqslant {s_i}_k\leqslant l_i\,\,, \forall i\in V,\forall k\in K \\ \,\, {x_i}_{j_k}\in \left\{ 0,1 \right\} \,\,, \forall \left( i,j \right) \in A,\forall k\in Kmink∈K∑i∈V∑i∈V∑cijxijks.t.k∈K∑j∈V∑xijk=1,∀i∈Cj∈V∑x0jk=1,∀k∈Ki∈V∑xihk−j∈V∑xhjk=0,∀h∈C,∀k∈Ki∈V∑xi,n+1,k=1,∀k∈Ki∈C∑qij∈V∑xijk=1,∀k∈Ksik+tij−M(1−xijk)⩽sjk,∀(i,j)∈A,∀k∈Kei⩽sik⩽li,∀i∈V,∀k∈Kxijk∈{0,1},∀(i,j)∈A,∀k∈K
其中:
目标函数是为了最小化所有车辆的总行驶成本(距离)约束1~4保证了每辆车必须从仓库出发,经过一个点就离开那个点,最终返回仓库约束5为车辆的容量约束约束6~7是时间窗约束,保证了车辆到达每个顾客点的时间均在时间窗内,点n+1是点o的一个备份,是为了方便实现。三、Python 调用 Gurobi 建模求解3.1 Solomn 数据集Solomn 数据集下载地址
3.2 完整代码注意,在下面代码中,将弧 iii 到弧 jjj 所需的时间 tijt_{ij}tij 和 成本 cijc_{ij}cij 都当作了弧 iii 到弧 jjj 所需的距离来看待
# -*- coding: utf-8 -*-## Author: WSKH# Blog: wskh0929.blog.csdn.net# Time: 2023/2/8 11:14# Description: Python 调用 Gurobi 建模求解 VRPTW 问题import timeimport matplotlib.pyplot as pltimport numpy as npfrom gurobipy import *class Data: customerNum = 0 nodeNum = 0 vehicleNum = 0 capacity = 0 corX = [] corY = [] demand = [] serviceTime = [] readyTime = [] dueTime = [] distanceMatrix = [[]]def readData(path, customerNum): data = Data() data.customerNum = customerNum if customerNum is not None: data.nodeNum = customerNum + 2 with open(path, 'r') as f: lines = f.readlines() count = 0 for line in lines: count += 1 if count == 5: line = line[:-1] s = re.split(r" +", line) data.vehicleNum = int(s[1]) data.capacity = float(s[2]) elif count >= 10 and (customerNum is None or count <= 10 + customerNum): line = line[:-1] s = re.split(r" +", line) data.corX.append(float(s[2])) data.corY.append(float(s[3])) data.demand.append(float(s[4])) data.readyTime.append(float(s[5])) data.dueTime.append(float(s[6])) data.serviceTime.append(float(s[7])) data.nodeNum = len(data.corX) + 1 data.customerNum = data.nodeNum - 2 # 回路 data.corX.append(data.corX[0]) data.corY.append(data.corY[0]) data.demand.append(data.demand[0]) data.readyTime.append(data.readyTime[0]) data.dueTime.append(data.dueTime[0]) data.serviceTime.append(data.serviceTime[0]) # 计算距离矩阵 data.distanceMatrix = np.zeros((data.nodeNum, data.nodeNum)) for i in range(data.nodeNum): for j in range(i + 1, data.nodeNum): distance = math.sqrt((data.corX[i] - data.corX[j]) ** 2 + (data.corY[i] - data.corY[j]) ** 2) data.distanceMatrix[i][j] = data.distanceMatrix[j][i] = distance return dataclass Solution: ObjVal = 0 X = [[]] S = [[]] routes = [[]] routeNum = 0 def __init__(self, data, model): self.ObjVal = model.ObjVal # X_ijk self.X = [[([0] * data.vehicleNum) for _ in range(data.nodeNum)] for _ in range(data.nodeNum)] # S_ik self.S = [([0] * data.vehicleNum) for _ in range(data.nodeNum)] # routes self.routes = []def getSolution(data, model): solution = Solution(data, model) for m in model.getVars(): split_arr = re.split(r"_", m.VarName) if split_arr[0] == 'X' and m.x > 0.5: solution.X[int(split_arr[1])][int(split_arr[2])][int(split_arr[3])] = m.x elif split_arr[0] == 'S' and m.x > 0.5: solution.S[int(split_arr[1])][int(split_arr[2])] = m.x for k in range(data.vehicleNum): i = 0 subRoute = [] subRoute.append(i) finish = False while not finish: for j in range(data.nodeNum): if solution.X[i][j][k] > 0.5: subRoute.append(j) i = j if j == data.nodeNum - 1: finish = True if len(subRoute) >= 3: subRoute[-1] = 0 solution.routes.append(subRoute) solution.routeNum += 1 return solutiondef plot_solution(solution, customer_num): plt.xlabel("x") plt.ylabel("y") plt.title(f"{data_type} : {customer_num} Customers") plt.scatter(data.corX[0], data.corY[0], c='blue', alpha=1, marker=',', linewidths=3, label='depot') # 起点 plt.scatter(data.corX[1:-1], data.corY[1:-1], c='black', alpha=1, marker='o', linewidths=3, label='customer') # 普通站点 for k in range(solution.routeNum): for i in range(len(solution.routes[k]) - 1): a = solution.routes[k][i] b = solution.routes[k][i + 1] x = [data.corX[a], data.corX[b]] y = [data.corY[a], data.corY[b]] plt.plot(x, y, 'k', linewidth=1) plt.grid(False) plt.legend(loc='best') plt.show()def print_solution(solution, data): for index, subRoute in enumerate(solution.routes): distance = 0 load = 0 for i in range(len(subRoute) - 1): distance += data.distanceMatrix[subRoute[i]][subRoute[i + 1]] load += data.demand[subRoute[i]] print(f"Route-{index + 1} : {subRoute} , distance: {distance} , load: {load}")def solve(data): #上一篇:使用Chatgpt 如何提问回答方法介绍(chat功能)
下一篇:【工程实践】np.loadtxt()读取数据(工程实践指的是)
友情链接: 武汉网站建设