位置: IT常识 - 正文

ChatGPT研究分析:GPT-4做了什么(patriotic研究)

编辑:rootadmin
ChatGPT研究分析:GPT-4做了什么

推荐整理分享ChatGPT研究分析:GPT-4做了什么(patriotic研究),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:ptst分析法,ptst分析法,srtp研究报告,ptst分析法,ptst分析法,srtp研究报告,chartted研究,chartted研究,内容如对您有帮助,希望把文章链接给更多的朋友!

前脚刚研究了一轮GPT3.5,OpenAI很快就升级了GPT-4,整体表现有进一步提升。追赶一下潮流,研究研究GPT-4干了啥。

本文内容全部源于对OpenAI公开的技术报告的解读,通篇以PR效果为主,实际内容不多。主要强调的工作,是“Predictable Scaling”这个概念。

ChatGPT研究分析:GPT-4做了什么(patriotic研究)

上一版ChatGPT的主要挑战是,因为模型的训练量极大,很难去进行优化(ChatGPT是fine-tuning的模式)。因此,OpenAI希望能够在模型训练初期,就进行优化,从而大幅提升人工调优迭代的效率。而想要进行调优,就得知道当前模型的效果如何。因此,这个问题就被转化为了:如何在模型训练初期,就能够预测最终训练完成后的实际效果。

从结果来看,ChatGPT实现了,仅仅执行千分之一到万分之一的训练量,就可以大致预测模型的结果。

实现原理相对简单,就是在某一个模型的不同训练阶段进行实际效果测量,然后做函数拟合,发现符合幂等曲线。然后再基于采样值,测算一下幂等函数的相关参数,下一轮就可以只进行少量训练,就去预测最终效果了。

至于其他效果上的优化,OpenAI没有进一步解读原理,但整体应该还是基于“训练-奖励”的优化模型,去生成更针对性的奖励模型(比如增加法律、安全之类的奖励判断),以实现更优的效果。

原版内容如下:

3 Predictable ScalingA large focus of the GPT-4 project was building a deep learning stack that scales predictably. The primary reason is that for very large training runs like GPT-4, it is not feasible to do extensive model-specific tuning. To address this, we developed infrastructure and optimization methods that have very predictable behavior across multiple scales. These improvements allowed us to reliably predict some aspects of the performance of GPT-4 from smaller models trained using 1, 000× – 10, 000× less compute.3.1 Loss PredictionThe final loss of properly-trained large language models is thought to be well approximated by power laws in the amount of compute used to train the model [35, 36, 2, 14, 15].To verify the scalability of our optimization infrastructure, we predicted GPT-4’s final loss on our internal codebase (not part of the training set) by fitting a scaling law with an irreducible loss term (as in Henighan et al. [15]): L(C) = aCb + c, from models trained using the same methodology but using at most 10,000x less compute than GPT-4. This prediction was made shortly after the run started, without use of any partial results. The fitted scaling law predicted GPT-4’s final loss with high accuracy (Figure 1).3.2 Scaling of Capabilities on HumanEvalHaving a sense of the capabilities of a model before training can improve decisions around alignment, safety, and deployment. In addition to predicting final loss, we developed methodology to predict more interpretable metrics of capability. One such metric is pass rate on the HumanEval dataset [37], which measures the ability to synthesize Python functions of varying complexity. We successfully predicted the pass rate on a subset of the HumanEval dataset by extrapolating from models trained with at most 1, 000× less compute (Figure 2).For an individual problem in HumanEval, performance may occasionally worsen with scale. Despite these challenges, we find an approximate power law relationship −EP [log(pass_rate(C))] = α∗C−kwhere k and α are positive constants, and P is a subset of problems in the dataset. We hypothesize that this relationship holds for all problems in this dataset. In practice, very low pass rates are difficult or impossible to estimate, so we restrict to problems P and models M such that given some large sample budget, every problem is solved at least once by every model.We registered predictions for GPT-4’s performance on HumanEval before training completed, using only information available prior to training. All but the 15 hardest HumanEval problems were split into 6 difficulty buckets based on the performance of smaller models. The results on the 3rd easiest bucket are shown in Figure 2, showing that the resulting predictions were very accurate for this subset of HumanEval problems where we can accurately estimate log(pass_rate) for several smaller models. Predictions on the other five buckets performed almost as well, the main exception being GPT-4 underperforming our predictions on the easiest bucket.Certain capabilities remain hard to predict. For example, the Inverse Scaling Prize [38] proposed several tasks for which model performance decreases as a function of scale. Similarly to a recent result by Wei et al. [39], we find that GPT-4 reverses this trend, as shown on one of the tasks called Hindsight Neglect [40] in Figure 3.We believe that accurately predicting future capabilities is important for safety. Going forward we plan to refine these methods and register performance predictions across various capabilities before large model training begins, and we hope this becomes a common goal in the field.

本文链接地址:https://www.jiuchutong.com/zhishi/298684.html 转载请保留说明!

上一篇:博客管理系统(前端页面设计)(博客管理系统开题报告)

下一篇:跟我学Python图像处理丨带你入门OpenGL(用python处理图像)

  • 企业所得税汇算清缴补缴税款分录
  • 免税收入对应的成本费用可以扣除吗
  • 工程会计税率
  • 什么是涉税信息
  • 金税啥意思
  • 小规模纳税人广联达怎么取费怎么取
  • 出差误餐补助是谁承担
  • 预缴增值税后隔多久缴纳
  • 水利基金应税项和减除项
  • 税控服务费减免税款分录
  • 资本公积什么情况下转增资本
  • 不得抵扣的进项税额转出会计分录
  • 收到短期贷款会计分录
  • 销售单用途商业预付卡是否可能涉嫌诈骗
  • 土地增值税预征率
  • 包工包料挣钱吗
  • 保险摊销什么 时候开始
  • 买鼠标去哪买
  • 企业重组中撤资所得税有哪些处理规则?
  • 折扣发票有什么作用
  • 纳税人识别码是啥
  • 小规模纳税人开票要交印花税吗
  • 团体意外伤害险是保的什么
  • 公司与个人合伙协议
  • 全年实现利润总额为6035
  • 购进的样品入账科目
  • 同期对比和同比增长
  • 收入未实现成本怎么进
  • 企业购置房产折旧
  • 一次性收取一年服务费怎么确定收入
  • 计提工资和发放工资区别
  • 单位外币账户
  • 代理报关的报关单发货人
  • 资本公积如何计提
  • 关闭windows defender实时防护
  • 如何使用腾讯电子签
  • 公司注销不清算可以吗
  • 营业外收入账户性质
  • 奥林匹克森林公园奥海
  • 事业单位资产管理中存在的问题及整改措施
  • 企业所得税退税流程
  • unplugin-auto-import/vite
  • php类的定义
  • php遍历数组使用的是
  • 固定资产清理属于非流动资产吗
  • python 如何
  • 出口退税未按期申报怎么办
  • 应交税费需要结转到本年利润吗
  • 个人申请退税要交税吗
  • 个人所得税部分缴款怎么算
  • 期末留抵税额怎么填报表
  • 收到服务费发票可以计入什么科目
  • 委托加工农产品的扣除率
  • 园林绿化公司的税率是多少
  • 母公司给子公司担保
  • 营改增后工程项目计价规则也随之发生了改变对错
  • 让Vista响应更快
  • linux tr命令详解
  • ubuntu英文系统安装中文输入法
  • linux查看磁盘挂载的命令
  • 无法登录所请求的数据库 用户sa登录失败
  • windows10出现飞行模式怎么办
  • yum could not resolve host
  • 在linux系统中,用来存放系统所需要的配置文件和子目录
  • win7便签在哪里找回来
  • unable to instantiate default
  • c#在unity的作用
  • vue组件生命周期执行顺序
  • 安卓手机如何打开.icon文件
  • js中计时器怎么写
  • jquery点击方法
  • jquery 右键菜单
  • jquery的方法有哪些
  • 基于JAVASCRIPT实现的可视化工具是
  • 四川省成都市国池酒厂52度原浆多少钱一瓶
  • 汽车购置税退税需要多长时间
  • 个人的房产出租征收什么税
  • 如何做好税务党建工作
  • 国有企业全面改革方案
  • 宁波个人税务查询网
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设