位置: IT常识 - 正文

mlp原来是这么回事(mlp是啥啊)

编辑:rootadmin
mlp原来是这么回事

推荐整理分享mlp原来是这么回事(mlp是啥啊),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:mlp/meme,mlp是啥啊,mlp是什么的缩写,mlp是啥啊,mlp是什么意思骂人,mlp网络用语是什么意思,mlp网络用语是什么意思,mlp是啥啊,内容如对您有帮助,希望把文章链接给更多的朋友!

开篇先告诉自己一件事,nerf用的是最快的relu激活,因为relu没有梯度消失现象,所以快,

至于这种现象的解释请看下图(还有elu和prelu这两个梯度保留的更好,nerf跑一跑?嘻嘻!):

ok,开始谈谈mlp,mlp实际上就是一个拥有多层神经网络的所谓多层感知机,感知机都是用来分类的

 由上图可知mlp最大的作用就是可以实现非线性的分类,而为什么可进行非线性分类,就是因为这个隐藏层进行了空间的转换,也就是我前一篇博客说的为了实现非线性必须要的操作。

mlp缺点也挺多的,速度慢算一个,难怪nerf跑得这么慢 ,给一个转载自其他人博客的mlp代码在这:

from __future__ import print_function, division import numpy as np import math from sklearn import datasets   from mlfromscratch.utils import train_test_split, to_categorical, normalize, accuracy_score, Plot from mlfromscratch.deep_learning.activation_functions import Sigmoid, Softmax from mlfromscratch.deep_learning.loss_functions import CrossEntropy   class MultilayerPerceptron():     """Multilayer Perceptron classifier. A fully-connected neural network with one hidden layer.     Unrolled to display the whole forward and backward pass.     Parameters:     -----------     n_hidden: int:         The number of processing nodes (neurons) in the hidden layer.      n_iterations: float         The number of training iterations the algorithm will tune the weights for.     learning_rate: float         The step length that will be used when updating the weights.     """     def __init__(self, n_hidden, n_iterations=3000, learning_rate=0.01):         self.n_hidden = n_hidden         self.n_iterations = n_iterations         self.learning_rate = learning_rate         self.hidden_activation = Sigmoid()         self.output_activation = Softmax()         self.loss = CrossEntropy()       def _initialize_weights(self, X, y):         n_samples, n_features = X.shape         _, n_outputs = y.shape         # Hidden layer         limit   = 1 / math.sqrt(n_features)         self.W  = np.random.uniform(-limit, limit, (n_features, self.n_hidden))         self.w0 = np.zeros((1, self.n_hidden))         # Output layer         limit   = 1 / math.sqrt(self.n_hidden)         self.V  = np.random.uniform(-limit, limit, (self.n_hidden, n_outputs))         self.v0 = np.zeros((1, n_outputs))       def fit(self, X, y):           self._initialize_weights(X, y)           for i in range(self.n_iterations):               # ..............             #  Forward Pass             # ..............               # HIDDEN LAYER             hidden_input = X.dot(self.W) + self.w0             hidden_output = self.hidden_activation(hidden_input)             # OUTPUT LAYER             output_layer_input = hidden_output.dot(self.V) + self.v0             y_pred = self.output_activation(output_layer_input)               # ...............             #  Backward Pass             # ...............               # OUTPUT LAYER             # Grad. w.r.t input of output layer             grad_wrt_out_l_input = self.loss.gradient(y, y_pred) * self.output_activation.gradient(output_layer_input)             grad_v = hidden_output.T.dot(grad_wrt_out_l_input)             grad_v0 = np.sum(grad_wrt_out_l_input, axis=0, keepdims=True)             # HIDDEN LAYER             # Grad. w.r.t input of hidden layer             grad_wrt_hidden_l_input = grad_wrt_out_l_input.dot(self.V.T) * self.hidden_activation.gradient(hidden_input)             grad_w = X.T.dot(grad_wrt_hidden_l_input)             grad_w0 = np.sum(grad_wrt_hidden_l_input, axis=0, keepdims=True)               # Update weights (by gradient descent)             # Move against the gradient to minimize loss             self.V  -= self.learning_rate * grad_v             self.v0 -= self.learning_rate * grad_v0             self.W  -= self.learning_rate * grad_w             self.w0 -= self.learning_rate * grad_w0       # Use the trained model to predict labels of X     def predict(self, X):         # Forward pass:         hidden_input = X.dot(self.W) + self.w0         hidden_output = self.hidden_activation(hidden_input)         output_layer_input = hidden_output.dot(self.V) + self.v0         y_pred = self.output_activation(output_layer_input)         return y_pred     def main():     data = datasets.load_digits()     X = normalize(data.data)     y = data.target       # Convert the nominal y values to binary     y = to_categorical(y)       X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=1)       # MLP     clf = MultilayerPerceptron(n_hidden=16,         n_iterations=1000,         learning_rate=0.01)       clf.fit(X_train, y_train)     y_pred = np.argmax(clf.predict(X_test), axis=1)     y_test = np.argmax(y_test, axis=1)       accuracy = accuracy_score(y_test, y_pred)     print ("Accuracy:", accuracy)       # Reduce dimension to two using PCA and plot the results     Plot().plot_in_2d(X_test, y_pred, title="Multilayer Perceptron", accuracy=accuracy, legend_labels=np.unique(y))   if __name__ == "__main__":     main()

mlp原来是这么回事(mlp是啥啊)

这里的隐藏层是全连接层,因为这个隐藏层要换x的空间肯定是要作用于全部的x上,在卷积网络上也有全连接层但那个和这个的意思不太一样(全连接只是表示这一层于上一层所有神经元都连接了,根据各个神经元的参数不同,全连接层的作用自然也是不同的),卷积里的是用来分类,

 这里全连接层的神经元是激活函数(可能有点语义表达错误和sigmoid那些应该不一样,刚看了一下是一样的,因为前一层神经元要先经过全连接层处理,然后经过激活函数处理,使用就是由激活函数判断它是否激活某个条件,我看Alex net用的是relu激活(这个函数在同样数据下激活态会多一点,我觉得可能是因为非饱和,值的范围比较大导致的,不过relu在梯度下降方面表现的似乎不错,先不管这个了))。

你如果前一层的神经元和权重的组合达到了一定的条件,那么这一层的某些神经元就会被激活(达到激活函数的条件了),最后的输出层只要把这些激活的东西拼在一起看是什么就行(当然这个拼起来的结果在数学上的表示是一个抽象值,这点我在之前的博客说过,得到了这个值就可以把它和我训练出来的猫的决策分界的值进行对比,就可以知道是不是猫了)。

有人跟我说全连接的输出维度如果小于输入维度(他称这个为隐层,我觉得和隐藏层的概念不同)是为了更好的拟合,我觉得有道理,减小了输入那原来的特征就只能被迫组合,这样也就必须出来一个组合后的产物(有点像数学上的拟合过程),叫拟合是正常的。放一个转载的连接层代码,方便理解:

import torch.nn as nn import torch.nn.functional as F

class Net(nn.Module):     def __init__(self):         #nn.Module子类的函数必须在构建函数中执行父类的构造函数         #下式等价于nn.Module.__init__(self)         super(Net, self).__init__()         #卷积层“1”表示输入图片为单通道,“6”表示输出通道数,‘5’表示卷积核为5*5         self.conv1 = nn.Conv2d(1, 6, 5)         #卷积层         self.conv2 = nn.Conv2d(6, 16, 5)         #全连接层,y=Wx+b         self.fc1 = nn.Linear(16*5*5, 120)         #参考第三节,这里第一层的核大小是前一层卷积层的输出和核大小16*5*5,一共120层         self.fc2 = nn.Linear(120, 84)         #接下来每一层的核大小为1*1         self.fc3 = nn.Linear(84, 10)

    def forward(self, x):         #卷积--激活--池化         x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))         x = F.max_pool2d(F.relu(self.conv2(x)), 2)         #reshape ,'-1'表示自适应         x = x.view(x.size()[0], -1)         x = F.relu(self.fc1(x))         x = F.relu(self.fc2(x))         x = self.fc3         return x

net = Net() print(net)

 我觉得这几个函数的特点我都要放一下,方便我以后清楚他们各自的作用。

本文链接地址:https://www.jiuchutong.com/zhishi/298765.html 转载请保留说明!

上一篇:分享2款CSS3母亲节主题寄语文字动画特效

下一篇:【疯狂世界杯】css 动画实现跳动的足球(疯狂世界百科)

  • 核定征收的一般纳税人开专票怎么入账
  • 支持疫情防控捐赠语言
  • 报关单完成出口后收汇期限4月30日
  • 关税的征收对象是贸易性商品,不包括
  • 季度申报,其他收益科目是怎样的科目
  • 企业可以找审计人员吗
  • 建筑安装服务的发票
  • 结转折旧费用是自动结转的吗
  • 发票勾选是否为转内销凭证是什么意思
  • 税控盘服务商
  • 小规模纳税人预缴税款怎么填申报表
  • 委托加工物资需要计提存货跌价准备吗
  • 车辆商业险和强制险交完给退么
  • 生产企业出口转内销增值税申报
  • 汇算清缴期间费用社保填哪里
  • 主营业务收入冲销
  • 公司车辆出售给个人怎么做账
  • 企业代办业务有哪些
  • 员工被单位罚款须要问单位要收据吗
  • 哪些政府补助可以做收入
  • 豪华小汽车消费税
  • 个人账户付款到对公账户
  • 软件存在的意义
  • 扬声器音量调节
  • 网关设置
  • 前端 vue
  • 销售返利如何做账
  • 应交税金的含义
  • 商业折扣影响税费吗
  • 支付征地补偿款计入什么科目
  • 货运代理开票
  • 关于交易性金融资产的问题
  • 房屋出租房产税如何计算
  • 公司日常流水账
  • 所得税季报本月数是指
  • 药品进销差价的计算公式
  • 小企业如何记账
  • yolov5map
  • 来料加工企业的划分标准
  • 公司财务变更需要变更哪些内容
  • 本月应付电费400元,下月支付
  • sqlcoalesce
  • mysql可以存什么
  • 数据库用户名称
  • 小规模纳税人免增值税的政策
  • 用库存现金支付职工医药费用69元,会计人员
  • 利润减负债
  • 春节法定假加班费政策依据
  • 以个人名义汇货要交税吗
  • 用现金支付的款项
  • 调整以前月份的管理费用怎么做
  • 印花税计入相关资产成本吗
  • 工程结算收入是否缴纳增值税
  • 预提成本费用的会计分录
  • 个人垫付社保会计分录
  • 跨年度利息收入如何调整
  • 注销股本对所有股票影响
  • 房地产 监控
  • 工会为员工购买水杯
  • 计税金额是什么科目
  • 职工教育经费的差旅费可以抵扣吗
  • 微软6月24发布
  • windows server 2008 企业版
  • 调整服务能力的策略不包括什么
  • linux/tmp
  • win8系统开机界面
  • 更新win8
  • postgres.exe是什么进程 postgres进程查询
  • 滚小球的实验过程和材料
  • 日历插件vue
  • dos命令行怎么打开
  • python爬虫教程
  • 自动断开网络共享怎么办
  • 前端自动化开发软件
  • js字符串的操作方法
  • javascript基础入门视频教程
  • 国家税务局湖南省电子税务局app下载
  • 电子签章在电脑上怎样加印章
  • 广州国税地税上班时间
  • 南通开发区地图高清版
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设