位置: IT常识 - 正文

深度学习实战(十):使用 PyTorch 进行 3D 医学图像分割

编辑:rootadmin
深度学习实战(十):使用 PyTorch 进行 3D 医学图像分割 深度学习实战(十):使用 PyTorch 进行 3D 医学图像分割1. 项目简介2. 3D医学图像分割的需求3. 医学图像和MRI4. 三维医学图像表示5. 3D-Unet模型5.1损失函数:Dice Loss5.2医学成像数据5.2.12017年I-Seg医学图像数据挑战赛6. Medical Zoo6.1实施细节6.2代码6.3实验结果7. 总结

推荐整理分享深度学习实战(十):使用 PyTorch 进行 3D 医学图像分割,希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!

MedicalZoo论文: Deep learning in medical image analysis: a comparative analysis of multi-modal brain-MRI segmentation with 3D deep neural networks 代码已开源:MedicalZooPytorch 更多Ai资讯:公主号AiCharm

1. 项目简介

  深度网络在计算机视觉领域的兴起,为经典的图像处理技术表现不佳的问题提供了最先进的解决方案。在泛化的图像识别任务中,包括物体检测、图像分类和分割、活动识别、光流和姿势估计等问题,可以轻松地声称DNN(深度神经网络)已经取得了卓越的性能。

  伴随着计算机视觉的兴起,人们对其在医学成像领域的应用产生了浓厚的兴趣。尽管医学成像数据不是那么容易获得,但DNN似乎是为这种复杂的高维数据建模的理想候选者。

  最近,伦敦帝国学院开设了COVID-19课程。很多研究已经尝试通过三维CT扫描的深度网络自动检测COVID-19。尽管如此,具体的应用数据仍然不可用。很明显,人工智能将通过医学影像对医学的发展产生巨大的影响。

  正如我将看到的,医学图像通常是三或四维的。这个领域吸引大量关注的另一个原因是它对人类生命的直接影响。在美国,医疗事故是继心脏病和癌症之后的第三大死因。因此,很明显,人类死亡的前三个原因都与医学成像有关。这就是为什么估计到2023年,人工智能和深度学习在医学成像领域将创造一个超过10亿美元的全新市场。

  这项工作作为这两个世界的交叉点:深度神经网络和医学成像。在这篇文章中,我将解决医学图像分割的问题,重点是磁共振图像,这是最受欢迎的任务之一,因为它是有人能获得的结构最完善的数据集的任务。由于在线医疗数据收集并不像听起来那么简单;文章的结尾提供了一个链接集,以开始你的旅程。

  本文介绍了一个正在开发的开源库的一些初步结果,该库名为MedicalZoo,可以在这里找到。

2. 3D医学图像分割的需求

  医学图像中的三维体积图像分割对于诊断、监测和治疗计划是强制性的。我将只使用磁共振图像(MRI)。人工操作需要解剖学知识,而且它们既昂贵又费时。另外,由于人为因素,它们可能是不准确的。然而,自动体积分割可以节省医生的时间,并为进一步分析提供准确的可重复的解决方案。

  我将首先描述MR成像的基本原理,因为了解你的输入数据对训练一个深度架构至关重要。然后,为读者提供一个可以有效地用于这项任务的3D-UNET的概述。

3. 医学图像和MRI

  医学成像试图揭示被皮肤和骨骼隐藏的内部结构,以及诊断和治疗疾病。医学磁共振(MR)成像使用氢原子核的信号来生成图像。就氢原子核而言:当它暴露在外部磁场中,表示为B0,磁矩,或自旋,像罗盘针一样与磁场方向对齐。

  所有的恒定磁化被一个额外的射频脉冲旋转到另一个平面,该脉冲足够强,应用时间足够长,以使磁化倾斜。激发之后,磁化就立即在另一个平面上旋转起来。旋转的磁化在接收线圈中产生了MR信号。然而,由于两个独立的过程,MR信号迅速消失,这两个过程减少了磁化,从而导致恢复到激发前的稳定状态,产生所谓的T1图像和T2磁共振图像。T1松弛与核子对其周围的能量过剩有关,而T2松弛指的是个别磁化矢量开始相互抵消的现象。上述现象是完全独立的。因此,不同的强度代表不同的组织,如下图所示。

4. 三维医学图像表示

  由于医学图像表示的是三维结构,所以可以通过使用三维体积的切片来处理它们,并进行常规的二维滑动卷积,如下图所示。我们假设红色矩形是一个5x5的图像片,可以用一个包含强度值的矩阵来表示。体素强度和内核用一个3x3的卷积内核进行卷积,如下图所示。以同样的模式,核在整个二维网格(医学图像切片)上滑动,每次我们都进行交叉相关。一个5x5的卷积补丁的结果被存储在一个3x3的矩阵中(为说明起见没有填充),并在网络的下一层传播。  或者,你可以把它们表示成类似于中间层的输出。在深度架构中,我们通常有多个特征图,这实际上是一个三维张量。如果有理由相信在额外的维度中存在模式,那么执行三维滑动卷积是最佳选择。在医学图像中就是这样的情况。与二维卷积类似,二维卷积是对二维领域中物体的空间关系进行编码,三维卷积可以描述三维空间中物体的空间关系。由于二维表示法对医学图像来说是次优的,我们将在这篇文章中选择使用三维卷积网络。   医学图像切片可以被看作是一个中间层的多个特征图,不同的是,它们有很强的空间关系。

5. 3D-Unet模型

  在我们的例子中,我们将使用已被接受的3D U形网络。后者(代码)扩展了对称的U形二维Unet网络的连续理念,在RGB相关的任务中产生了令人印象深刻的结果,如语义分割。该模型有一个编码器(收缩路径)和一个解码器(合成路径)路径,每个路径有四个解析步骤。在编码器路径中,每层包含两个3×3×3的卷积,每个卷积后面都有一个整流线性单元(ReLu),然后是一个2×2×2的最大集合,每个维度的步长为2。在解码路径中,每层由2×2×2的转置卷积组成,每个维度的步长为2,然后是两个3×3×3的卷积,每个卷积后面是一个ReLu。分析路径中同等分辨率层的快捷跳转连接为合成路径提供了基本的高分辨率特征。在最后一层,一个1×1×1的卷积将输出通道的数量减少到标签的数量。通过在最大池化之前将通道数量增加一倍,避免了瓶颈问题。在每个ReLU之前,都会引入三维批次归一化。在训练过程中,每个批次的平均值和标准差都被归一化,并且使用这些值更新全局统计数据。接下来是一个明确学习比例和偏置的层。下图说明了网络结构。

5.1损失函数:Dice Loss

  由于固有的任务不平衡性,交叉熵不能总是为这项任务提供良好的解决方案。具体来说,交叉熵损失单独检查每个像素,将类预测(深度方向的像素向量)与我们的一热编码目标向量进行比较。因为交叉熵损失单独评估了每个像素向量的类别预测,然后对所有像素进行平均,所以我们基本上是在断言对图像中的每个像素进行平等的学习。如果你的各种类别在图像中的代表性不平衡,这可能是一个问题,因为最普遍的类别可能主导训练。

深度学习实战(十):使用 PyTorch 进行 3D 医学图像分割

  我们将试图在大脑核磁共振成像中区分的4个类别在图像中具有不同的频率(即空气比其他组织的实例多得多)。这就是为什么采用Dice Loss指标的原因。它以骰子系数为基础,本质上是对两个样本之间重叠的测量。这个度量的范围从0到1,其中Dice系数为1表示完美和完全重叠。Dice损失最初是为二元分类而开发的,但它可以被推广到多类工作中。请自由使用我们的Dice loss的多类实现。

5.2医学成像数据

  深度架构需要大量的训练样本,然后才能产生任何有用的泛化表征,而标记的训练数据通常既昂贵又难以产生。这就是为什么我们每天都能看到使用生成学习的新技术来产生越来越多的医学成像数据。此外,训练数据必须能代表网络在未来将遇到的数据。如果训练样本来自与现实世界中会遇到的数据分布不同,那么网络的泛化性能将低于预期。

  由于我们关注的是大脑核磁共振自动分割,所以有必要简单介绍一下DNN试图区分的大脑基本结构:a)白质(WM),b)灰质(GM),c)脑脊液(CSF)。下图说明了大脑MRI切片中的分割组织。

5.2.12017年I-Seg医学图像数据挑战赛

  在这个关键时期,将婴儿大脑MRI图像准确分割成白质(WM)、灰质(GM)和脑脊液(CSF),对研究正常和异常的早期大脑发育具有根本性的意义。生命的第一年是产后人脑发育最活跃的阶段,伴随着快速的组织生长和各种认知和运动功能的发展。这个早期阶段在许多神经发育和神经精神疾病中至关重要,如精神分裂症和自闭症。人们对这一关键时期给予了越来越多的关注。

  这个数据集的目的是促进6个月婴儿大脑核磁共振成像的自动分割算法。这项挑战与MICCAI 2017同时进行,共有21个国际团队参加。该数据集包含10张来自专家的密集注释的图像和13张用于测试的成像。不提供测试标签,只有在官方网站上上传结果后才能看到自己的分数。每个受试者都有一张T1加权和T2加权的图像。

  第一个受试者将用于测试。原始MR卷的大小为256x192x144。在3D-Unet中,所使用的采样子卷的大小为128x128x64。产生的训练数据集包括500个子卷。对于验证集,使用了来自一个主体的10个随机样本。

  数据集下载

6. Medical Zoo

  我们的目标是在PyTorch中实现一个由最先进的三维深度神经网络组成的开源医学图像分割库,以及最常见的医学数据集的数据加载器。我们的资源库的第一个稳定版本预计将很快发布。

  我们坚信开放和可重复的深度学习研究。为了重现我们的成果,这项工作的代码和材料都可以在这个资源库中找到。这个项目是作为硕士论文开始的,目前正在进一步开发中。

6.1实施细节

  我们使用PyTorch框架,这被认为是最广泛接受的深度学习研究工具。所有的实验都采用了随机梯度下降法,单批大小,学习率为1e-3,权重衰减为1e-8。我们在资源库中提供了测试,你可以很容易地重现我们的结果,这样你就可以使用代码、模型和数据加载器。

  最近,我们用Pytorch增加了Tensorboard的可视化功能。这个惊人的功能让你的理智保持在原地,让你跟踪模型的训练过程。下面你可以看到一个保持训练统计的例子,dice coeff.和损失,以及每类分数,以了解模型的行为。

6.2代码

  让我们把所有描述的模块放在一起,用MedicalZoo的一个简短的脚本(为了说明问题)建立一个实验。

# Python librariesimport argparseimport os# Lib filesimport lib.medloaders as medical_loadersimport lib.medzoo as medzooimport lib.train as trainimport lib.utils as utilsfrom lib.losses3D import DiceLossdef main(): args = get_arguments() utils.make_dirs(args.save) training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(args, path='.././datasets') model, optimizer = medzoo.create_model(args) criterion = DiceLoss(classes=args.classes) if args.cuda: model = model.cuda() print("Model transferred in GPU.....") trainer = train.Trainer(args, model, criterion, optimizer, train_data_loader=training_generator, valid_data_loader=val_generator, lr_scheduler=None) print("START TRAINING...") trainer.training()def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--batchSz', type=int, default=4) parser.add_argument('--dataset_name', type=str, default="iseg2017") parser.add_argument('--dim', nargs="+", type=int, default=(64, 64, 64)) parser.add_argument('--nEpochs', type=int, default=200) parser.add_argument('--classes', type=int, default=4) parser.add_argument('--samples_train', type=int, default=1024) parser.add_argument('--samples_val', type=int, default=128) parser.add_argument('--inChannels', type=int, default=2) parser.add_argument('--inModalities', type=int, default=2) parser.add_argument('--threshold', default=0.1, type=float) parser.add_argument('--terminal_show_freq', default=50) parser.add_argument('--augmentation', action='store_true', default=False) parser.add_argument('--normalization', default='full_volume_mean', type=str, help='Tensor normalization: options ,max_min,', choices=('max_min', 'full_volume_mean', 'brats', 'max', 'mean')) parser.add_argument('--split', default=0.8, type=float, help='Select percentage of training data(default: 0.8)') parser.add_argument('--lr', default=1e-2, type=float, help='learning rate (default: 1e-3)') parser.add_argument('--cuda', action='store_true', default=True) parser.add_argument('--loadData', default=True) parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--model', type=str, default='VNET', choices=('VNET', 'VNET2', 'UNET3D', 'DENSENET1', 'DENSENET2', 'DENSENET3', 'HYPERDENSENET')) parser.add_argument('--opt', type=str, default='sgd', choices=('sgd', 'adam', 'rmsprop')) parser.add_argument('--log_dir', type=str, default='../runs/') args = parser.parse_args() args.save = '../saved_models/' + args.model + '_checkpoints/' + args.model + '_{}_{}_'.format( utils.datestr(), args.dataset_name) return argsif __name__ == '__main__': main()6.3实验结果

  下面你可以看到模型的训练和验证Dice LOSS曲线。监测你的模型性能并调整参数以获得如此平滑的训练曲线是很重要的。这很容易理解这个模型的效率。   令人惊讶的是,该模型在子卷的验证集中达到了大约93%的骰子系数得分。最后但同样重要的是,让我们看看3D-Unet在验证集中的一些可视化预测。我们在这里只展示了一个有代表性的切片,尽管预测的是一个三维卷。通过提取核磁共振的多个子容积,我们可以将它们结合起来形成一个完整的三维核磁共振分割。请注意,我们使用子卷取样的事实是作为数据的增强。

来自训练过的3D-Unet的未规范化的最后一层预激活。该网络学习高度语义的任务相关内容,对应于与输入相似的大脑结构。   我们的预测VS地面真相。你认为哪一个预测是地面真相?在你决定之前,请仔细观察 值得注意的是,我们在这里只展示了中轴切片,但预测是一个三维体积。人们可以观察到,该网络完美地预测了空气体素,而它在区分组织边界方面有困难。但是,让我们再检查一下,找出真正的!   现在,我相信你能分辨出地面的真相。如果你不确定,请查看文章的结尾

  最近我们还增加了Pytorch的Tensorboard可视化功能。这个惊人的功能让你的理智保持在原地,让你跟踪模型的训练过程。下面你可以看到一个保持训练统计的例子,骰子系数和损失,以及每类分数,以了解模型的行为。

  很明显,不同的组织有不同的准确度,甚至从训练的开始。例如,看一下验证集中的空气体素,它们从高值开始,因为它是不平衡数据集中最主要的一类。另一方面,灰质从最低值开始,因为它是最难区分的,而且训练实例较少。

7. 总结

  这篇文章部分地说明了MedicalZoo Pytorch库的一些特点。深度学习模型将为社会提供沉浸式医疗图像解决方案。

  在这篇文章中,回顾了医学成像和MRI的基本概念,以及它们如何在深度学习架构中被表示和使用。然后,描述了一个高效的被广泛接受的三维架构(Unet)和处理类不平衡的骰子损失函数。最后,结合了所有上述描述的特征,并使用库脚本提供了我们在大脑MRI中的实验分析的初步结果。这些结果证明了3D架构的效率和深度学习在医学图像分析中的潜力。

更多Ai资讯:公主号AiCharm

本文链接地址:https://www.jiuchutong.com/zhishi/298777.html 转载请保留说明!

上一篇:【第二趴】uni-app开发工具(手把手带你安装HBuilderX、搭建第一个多端项目初体验)

下一篇:嵌入式从业10年,聊聊我对工业互联网和消费物联网的看法 | 文末赠书4本

  • vivo长按屏幕识别怎么关闭(vivo长按屏幕识别怎么设置)

    vivo长按屏幕识别怎么关闭(vivo长按屏幕识别怎么设置)

  • 手机用着用着就自己重启了(手机用着用着就自动关机是什么原因)

    手机用着用着就自己重启了(手机用着用着就自动关机是什么原因)

  • 淘小铺是什么模式(淘小铺的是什么)

    淘小铺是什么模式(淘小铺的是什么)

  • 滴滴500单滚动什么意思(滴滴500单滚动在哪里能查询到)

    滴滴500单滚动什么意思(滴滴500单滚动在哪里能查询到)

  • 红米有红外线功能吗(红米有红外线功能吗手机)

    红米有红外线功能吗(红米有红外线功能吗手机)

  • 买的新手机老卡怎么回事(新买手机老是卡怎么办)

    买的新手机老卡怎么回事(新买手机老是卡怎么办)

  • 苹果se支持动态壁纸吗(iphone se可以设置动态壁纸吗)

    苹果se支持动态壁纸吗(iphone se可以设置动态壁纸吗)

  • iphone11充电时间多久(苹果11充电周期是什么意思)

    iphone11充电时间多久(苹果11充电周期是什么意思)

  • qq注销失败怎么回事(qq注销账号注销失败的原因)

    qq注销失败怎么回事(qq注销账号注销失败的原因)

  • 移动硬盘加密和不加密的区别(移动硬盘加密的好还是不加密的好)

    移动硬盘加密和不加密的区别(移动硬盘加密的好还是不加密的好)

  • 四个视频同框怎么做

    四个视频同框怎么做

  • 微信夜间模式在哪里关闭(微信夜间模式在哪里设置vivo)

    微信夜间模式在哪里关闭(微信夜间模式在哪里设置vivo)

  • ps选区后怎么抠出来(ps怎么把选区抠出来随意移动)

    ps选区后怎么抠出来(ps怎么把选区抠出来随意移动)

  • nova6se指纹解锁在哪(nova6se指纹解锁在哪里)

    nova6se指纹解锁在哪(nova6se指纹解锁在哪里)

  • a1474是ipad第几代(a1474是第几代平板)

    a1474是ipad第几代(a1474是第几代平板)

  • vps怎么连接(vps怎么连接手机)

    vps怎么连接(vps怎么连接手机)

  • 显卡怎么固定(显卡怎么固定螺丝)

    显卡怎么固定(显卡怎么固定螺丝)

  • 1660显卡配什么cpu(1660显卡配什么cpu最合适)

    1660显卡配什么cpu(1660显卡配什么cpu最合适)

  • 小米6x什么时候更新miui11(小米8什么时候上市)

    小米6x什么时候更新miui11(小米8什么时候上市)

  • 淘宝关注的主播在哪里(淘宝关注的主播怎么找到)

    淘宝关注的主播在哪里(淘宝关注的主播怎么找到)

  • 红米手机如何截屏(红米手机如何截图长条图片)

    红米手机如何截屏(红米手机如何截图长条图片)

  • 苹果x要不要升级ios12

    苹果x要不要升级ios12

  • 苹果6怎么下载爱奇艺(苹果6怎么下载Instagram)

    苹果6怎么下载爱奇艺(苹果6怎么下载Instagram)

  • 蓝牙耳机充电仓怎么知道有没有充满电(蓝牙耳机充电仓丢了怎么办)

    蓝牙耳机充电仓怎么知道有没有充满电(蓝牙耳机充电仓丢了怎么办)

  • huaweiMate 20的上市时间是什么时候(华为mate20上架)

    huaweiMate 20的上市时间是什么时候(华为mate20上架)

  • 华为p30相册在哪里(华为p30相册在哪个文件夹)

    华为p30相册在哪里(华为p30相册在哪个文件夹)

  • 苹果手机miracast功能怎么打开(苹果手机miracast在哪里找到)

    苹果手机miracast功能怎么打开(苹果手机miracast在哪里找到)

  • win7系统招行网银专业版无法登陆无效请求,请重新(招行网银专业版怎么登陆)

    win7系统招行网银专业版无法登陆无效请求,请重新(招行网银专业版怎么登陆)

  • 数据类型(数据类型所占的字节)

    数据类型(数据类型所占的字节)

  • 计提坏账为什么是递延所得税资产
  • 增值税发票服务名称可以更改吗
  • 企业代扣代缴个人所得税系统
  • 土地增值税税率2023
  • 发票报送日志不完整
  • 工会经费如何申报?
  • 移动话费可以开企业发票吗
  • 已申报未导入是申报成功了吗
  • 科目汇总表会计核算形式
  • 年度销售返利的计算方法
  • 停产期间产生的费用怎么处理?
  • 无法确认退货率时,差错更正为啥不反转增值税
  • 确认社保局工伤赔款会计分录
  • 固定资产领用原材料要考虑增值税吗?
  • 旧税号开出的发票能认证抵扣吗?
  • 增值税滞留票产生的原因及处理办法
  • 电子发票收款人和复核人可以是一个人吗
  • 企业的商誉会一直存在吗
  • macos dock栏
  • 租赁费摊销计入什么科目
  • 模具维修费做什么费用
  • 股票发行费用怎么处理
  • 罚款应该计入营业所吗
  • php require的用法
  • php://input用法
  • PHP:mcrypt_generic_end()的用法_Mcrypt函数
  • php随机ua
  • 如何补办二手车牌照
  • 环绕着山的是什么歌
  • 应收账款如何做会计分录
  • 现在用yii框架的人还多么
  • vue企业开发实战
  • php隐藏图片地址
  • 残保金申报缴纳时间
  • 股权转让怎么做凭证分录
  • unix命令大全详解
  • 哪些收据可以入账且可以税前抵扣
  • 租入固定资产改良
  • 培训机构账务处理
  • 工会经费税前扣除是什么意思
  • 小微企业开具增值税专票
  • 固定资产计提完折旧报废的账务处理
  • 6月发5月工资怎么做账
  • 融资租赁有免租金吗
  • 法人治理结构是指明确
  • 兼职人员属于雇主吗
  • 生产防疫物资的厂家联系方式
  • 季度企业所得税资产总额怎么填
  • mysql5.6设置密码
  • mysql字符串索引如何排序
  • 金税四期注意什么
  • 低值易耗品如何界定
  • 计提的费用收到发票时候怎么做账
  • 研发支出资本化支出在资产负债表哪里体现
  • 公司担保无效的后果
  • 购买产品样品计入什么科目
  • 总账科目有应交税费对吗
  • 现金日记账定金怎么算
  • 购买固定资产记账
  • 计提工资的凭证要附单据吗
  • 滞纳金在年报的营业外支出的哪一项?
  • 税控盘的会计分录怎么做
  • 待处理财产损益是备抵类科目吗
  • navicat连接教程
  • win10系统d盘变成e盘,进入winpe盘符正常
  • centos7.0网络配置
  • onekey driver version是什么软件
  • win8怎么调整屏幕分辨率
  • cocos怎么用
  • Extjs4 关于Store的一些操作(加载/回调/添加)
  • ms-sys
  • nodejs requirejs
  • 基于javascript的毕业设计选题
  • 建筑行业增值税11%
  • 进口退税能退税吗现在
  • 江西省税务局发票查询平台官网
  • 电子税务局网上实名认证流程
  • 厦门市地方税务局市稽查局关于规范稽查有关规定
  • 高新区地税办税服务厅
  • 天津市东丽区军粮城派出所电话
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设