位置: IT常识 - 正文

5.OpenCV图像拼接(opencv拼接图片)

编辑:rootadmin
5.OpenCV图像拼接 一、前言

推荐整理分享5.OpenCV图像拼接(opencv拼接图片),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:opencv图片叠加显示,opencv 拼图,opencv图片叠加显示,opencv图片合成,opencv两张图片融合,opencvsharp 图像拼接,opencv图片合成,opencv 拼图,内容如对您有帮助,希望把文章链接给更多的朋友!

   图像拼接(Image Stitching)是一种利用实景图像组成全景空间的技术,它将多幅图像拼接成一幅大尺度图像或360°全景图,可视作场景重建的一种特殊情况,其中图像仅通过平面单应性进行关联。图像拼接在运动检测和跟踪,增强现实,分辨率增强,视频压缩和图像稳定等机器视觉领域有很大的应用。   图像拼接的输出是两个输入图像的并集。

输入图像特征点提取特征点匹配图像配准投影变换拼缝计算图像融合生成全景图

1、特征点提取(Feature Extraction):检测输入图像中的特征点。 2、图像配准(Image Registration):建立了图像之间的集合对应关系,使它们可在一个共同的参照系中进行变换、比较和分析。 3、投影变换(Warping):将其中一幅图像的图像重投影,并将图像放置在更大的画布上。 4、图像融合(Blending):通过改变边界附近的图像灰度级,去除这些缝隙,创建混合图像,从而在图像之间实现平滑过渡。混合模式(Blending Modes)用于将两层融合到一起。

二、实现方法基于SURF的图像拼接5.OpenCV图像拼接(opencv拼接图片)

  用SIFT算法来实现图像拼接是很常用的方法,但是因为SIFT计算量很大,所以在速度要求很高的场合下不再适用。所以,它的改进方法SURF因为在速度方面有了明显的提高(速度是SIFT的3倍),所以在图像拼接领域还是大有作为。虽说SURF精确度和稳定性不及SIFT,但是其综合能力还是优越一些。下面将详细介绍拼接的主要步骤。

1.特征点提取和匹配 //创建SURF对象 //create 参数 海森矩阵阈值 Ptr<SURF> surf; surf = SURF::create(800); //暴力匹配器 BFMatcher matcher; vector<KeyPoint> key1, key2; Mat c, d; //寻找特征点 surf->detectAndCompute(left, Mat(), key2, d); surf->detectAndCompute(right, Mat(), key1, c); //特征点对比 保存 vector<DMatch>matches; //使用暴力匹配器匹配特征点 保存 matcher.match(d, c, matches); //排序 从小到大 sort(matches.begin(), matches.end()); //保留最优的特征点收集 vector<DMatch>good_matches; int ptrPoint = std::min(50, (int)(matches.size()*0.15)); for(int i=0; i<ptrPoint; i++) good_matches.push_back(matches[i]); //最佳匹配的特征点连成一线 Mat outimg; drawMatches(left, key2, right, key1, good_matches, outimg, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); imshow("outimg", outimg);

2.图像配准

  这样子就得到了两幅待拼接图的匹配点集,接下来进行图像的配准,即将两张图像转换为同一坐标下,这里需要使用findHomography函数来求得变换矩阵。   但是需要注意的是,findHomography函数所要用到的点集是Point2f类型的,所以需要对刚得到的点集good_matches再做一次处理,使其转换为Point2f类型的点集。

//特征点配准 vector<Point2f>imagepoint1, imagepoint2; for(int i=0; i<good_matches.size(); i++) { imagepoint1.push_back(key1[good_matches[i].trainIdx].pt); imagepoint2.push_back(key2[good_matches[i].queryIdx].pt); }

  上述操作后,用imagepoint1, imagepoint2去求变换矩阵,并且实现图像配准。   值得注意的是findHomography函数的参数中选择CV_RANSAC。使用RANSAC算法继续筛选可靠地匹配点,这使得匹配点解更为精确。

//透视转换 Mat homo = findHomography(imagepoint1, imagepoint2, CV_RANSAC); imshow("homo", homo); //右图四个顶点坐标转换计算 CalcCorners(homo, right); Mat imageTransform; warpPerspective(right, imageTransform, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), left.rows)); imshow("imageTransform", imageTransform);

3.图像拷贝

拷贝的思路很简单,就是将左图直接拷贝到配准图上就可以了。

int dst_width = imageTransform.cols; int dst_height = imageTransform.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform.copyTo(dst(Rect(0, 0, imageTransform.cols, imageTransform.rows))); left.copyTo(dst(Rect(0, 0, left.cols, left.rows)));

4.图像融合(去裂缝处理) OptimizeSeam(left, imageTransform, dst); imshow("dst", dst); waitKey(0);//优化两图的连接处,使得拼接自然void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst){ int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 double processWidth = img1.cols - start;//重叠区域的宽度 int rows = dst.rows; int cols = img1.cols; //注意,是列数*通道数 double alpha = 1;//img1中像素的权重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //获取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据 if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } }}

三、完整代码#include <iostream>#include <opencv2/opencv.hpp>#include <opencv2/highgui.hpp>#include <opencv2/xfeatures2d.hpp>#include <opencv2/calib3d.hpp>#include <opencv2/imgproc.hpp>using namespace std;using namespace cv;using namespace cv::xfeatures2d;typedef struct{ Point2f left_top; Point2f left_bottom; Point2f right_top; Point2f right_bottom;}four_corners_t;four_corners_t corners;void CalcCorners(const Mat& H, const Mat& src){ double v2[] = { 0, 0, 1 };//左上角 double v1[3];//变换后的坐标值 Mat V2 = Mat(3, 1, CV_64FC1, v2); //列向量 Mat V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; //左上角(0,0,1) cout << "V2: " << V2 << endl; cout << "V1: " << V1 << endl; corners.left_top.x = v1[0] / v1[2]; corners.left_top.y = v1[1] / v1[2]; //左下角(0,src.rows,1) v2[0] = 0; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.left_bottom.x = v1[0] / v1[2]; corners.left_bottom.y = v1[1] / v1[2]; //右上角(src.cols,0,1) v2[0] = src.cols; v2[1] = 0; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_top.x = v1[0] / v1[2]; corners.right_top.y = v1[1] / v1[2]; //右下角(src.cols,src.rows,1) v2[0] = src.cols; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_bottom.x = v1[0] / v1[2]; corners.right_bottom.y = v1[1] / v1[2];}//优化两图的连接处,使得拼接自然void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst){ int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 double processWidth = img1.cols - start;//重叠区域的宽度 int rows = dst.rows; int cols = img1.cols; //注意,是列数*通道数 double alpha = 1;//img1中像素的权重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //获取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据 if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } }}//计算配准图的四个顶点坐标int main(){ Mat left = imread("A.jpg"); Mat right =imread("B.jpg"); imshow("left", left); imshow("right", right); //1.特征点提取和匹配 //创建SURF对象 //create 参数 海森矩阵阈值 Ptr<SURF> surf; surf = SURF::create(800); //暴力匹配器 BFMatcher matcher; vector<KeyPoint> key1, key2; Mat c, d; //寻找特征点 surf->detectAndCompute(left, Mat(), key2, d); surf->detectAndCompute(right, Mat(), key1, c); //特征点对比 保存 vector<DMatch>matches; //使用暴力匹配器匹配特征点 保存 matcher.match(d, c, matches); //排序 从小到大 sort(matches.begin(), matches.end()); //保留最优的特征点收集 vector<DMatch>good_matches; int ptrPoint = std::min(50, (int)(matches.size()*0.15)); for(int i=0; i<ptrPoint; i++) good_matches.push_back(matches[i]); //最佳匹配的特征点连成一线 Mat outimg; drawMatches(left, key2, right, key1, good_matches, outimg, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); imshow("outimg", outimg); //2.图像配准 //特征点配准 vector<Point2f>imagepoint1, imagepoint2; for(int i=0; i<good_matches.size(); i++) { imagepoint1.push_back(key1[good_matches[i].trainIdx].pt); imagepoint2.push_back(key2[good_matches[i].queryIdx].pt); } //透视转换 Mat homo = findHomography(imagepoint1, imagepoint2, CV_RANSAC); imshow("homo", homo); //右图四个顶点坐标转换计算 CalcCorners(homo, right); Mat imageTransform; warpPerspective(right, imageTransform, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), left.rows)); imshow("imageTransform", imageTransform); //3.图像拷贝 int dst_width = imageTransform.cols; int dst_height = imageTransform.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform.copyTo(dst(Rect(0, 0, imageTransform.cols, imageTransform.rows))); left.copyTo(dst(Rect(0, 0, left.cols, left.rows))); //4.优化拼接最终结果图,去除黑边 OptimizeSeam(left, imageTransform, dst); imshow("dst", dst); waitKey(0); return 0;}
本文链接地址:https://www.jiuchutong.com/zhishi/298845.html 转载请保留说明!

上一篇:浅识WebGL和Three.js(webgl1.0)

下一篇:Vue父子组件生命周期执行顺序是什么?(vue父子组件生命周期钩子执行顺序)

  • 实收资本的期末余额在借方还是贷方
  • 所得税费用增加利润减少
  • 外贸公司进项票要专票还是普票
  • 税盘服务费抵税怎么做分录
  • 成品油跨月发票红字冲销步骤
  • 外地建筑工程开票流程
  • 发票抵扣联认证抵扣分录
  • 物业公司收物业费如何入账
  • 预收账款计入应纳税所得额
  • 合伙企业交个税例题
  • 房产税计税依据房产原值怎么算
  • 旅游合同签订
  • 如何确定增值税以旧换新方式下销售货物的销售额
  • 固定资产机器设备使用年限
  • 年度企业所得税申报时间
  • 计提工资附加费啥意思
  • 资产预测怎么写
  • 中级会计考试考后审核需要什么资料
  • 鸿蒙系统控制中心
  • 员工的罚款计入什么科目
  • 什么情况下公司可以开除员工
  • 企业所得税税前扣除凭证规定
  • linux joe
  • 企业因政策性原因发生的巨额经营亏损
  • 增值税发票作废后还能查到吗
  • kafka图形化界面
  • 小企业会计准则和一般企业会计准则的区别
  • 待抵扣进项税额和进项税额的区别
  • token的用处
  • 车辆保险费用的申请模板
  • 成本法下长期股权投资的处置
  • vue route 参数
  • golang 和 java
  • 资本金什么时候可以退回
  • 报表里主营业务怎么填
  • 劳务报酬可以专项附加扣除吗
  • 存货盘亏原因不明会计分录
  • 超过认证期限的发票未抵扣能红冲吗
  • 企业发生销售退回时,不论销售退回的商品
  • dedecms插件
  • 担保公司代偿会上征信嘛
  • 所得税视同销售行为有哪些呢?
  • 发票校验码被章盖住了
  • 科目余额表和资产负债表的期末余额不一样,怎么办
  • 小微企业缴纳增值税的账务处理
  • mysql5.5远程连接
  • 小规模纳税人减免增值税会计处理
  • 检查sqlserver是否安装完成
  • 一般纳税人开普票和专票有什么区别
  • 主营业务收入净额在哪个报表里面
  • 等线支付给劳务派遣单位的工资怎么做账?
  • 公司购买的商业保险如何使用
  • 国有独资企业董事会成员组成规定
  • 营改增企业是什么意思
  • 企业其他应付款增加的原因
  • 应付账款预付账款期末余额怎么算
  • 改制后的企业
  • mysql索引数据结构有哪些
  • SQL Server COALESCE函数详解及实例
  • mysql嵌套查询联表查询
  • windows无法启动wlanautoconfig服务
  • vista电脑密码忘了怎么解除
  • freebsd中文手册
  • vrvprotect.sys
  • linux编译安装php扩展命令
  • Win10技巧:如何开启隐藏的锁屏时间设置项
  • randomdigits.exe - randomdigits是什么进程 有什么用
  • Linux 修改文件名后缀
  • centos删除virbr0
  • perl -pi
  • unity udim
  • OpenGL Framebuffer Object (FBO)
  • js去除hover样式
  • list嵌套list采用什么结构
  • 调试动态加载的js
  • jQuery ajax请求返回list数据动态生成input标签,并把list数据赋值到input标签
  • 安卓音频分析软件
  • 免征的增值税税额应计入营业外收入嘛
  • 烟叶税比例
  • 如何查询海关进口货物报关单
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设