位置: IT常识 - 正文
推荐整理分享5.OpenCV图像拼接(opencv拼接图片),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:opencv图片叠加显示,opencv 拼图,opencv图片叠加显示,opencv图片合成,opencv两张图片融合,opencvsharp 图像拼接,opencv图片合成,opencv 拼图,内容如对您有帮助,希望把文章链接给更多的朋友!
图像拼接(Image Stitching)是一种利用实景图像组成全景空间的技术,它将多幅图像拼接成一幅大尺度图像或360°全景图,可视作场景重建的一种特殊情况,其中图像仅通过平面单应性进行关联。图像拼接在运动检测和跟踪,增强现实,分辨率增强,视频压缩和图像稳定等机器视觉领域有很大的应用。 图像拼接的输出是两个输入图像的并集。
输入图像特征点提取特征点匹配图像配准投影变换拼缝计算图像融合生成全景图1、特征点提取(Feature Extraction):检测输入图像中的特征点。 2、图像配准(Image Registration):建立了图像之间的集合对应关系,使它们可在一个共同的参照系中进行变换、比较和分析。 3、投影变换(Warping):将其中一幅图像的图像重投影,并将图像放置在更大的画布上。 4、图像融合(Blending):通过改变边界附近的图像灰度级,去除这些缝隙,创建混合图像,从而在图像之间实现平滑过渡。混合模式(Blending Modes)用于将两层融合到一起。
二、实现方法基于SURF的图像拼接用SIFT算法来实现图像拼接是很常用的方法,但是因为SIFT计算量很大,所以在速度要求很高的场合下不再适用。所以,它的改进方法SURF因为在速度方面有了明显的提高(速度是SIFT的3倍),所以在图像拼接领域还是大有作为。虽说SURF精确度和稳定性不及SIFT,但是其综合能力还是优越一些。下面将详细介绍拼接的主要步骤。
1.特征点提取和匹配 //创建SURF对象 //create 参数 海森矩阵阈值 Ptr<SURF> surf; surf = SURF::create(800); //暴力匹配器 BFMatcher matcher; vector<KeyPoint> key1, key2; Mat c, d; //寻找特征点 surf->detectAndCompute(left, Mat(), key2, d); surf->detectAndCompute(right, Mat(), key1, c); //特征点对比 保存 vector<DMatch>matches; //使用暴力匹配器匹配特征点 保存 matcher.match(d, c, matches); //排序 从小到大 sort(matches.begin(), matches.end()); //保留最优的特征点收集 vector<DMatch>good_matches; int ptrPoint = std::min(50, (int)(matches.size()*0.15)); for(int i=0; i<ptrPoint; i++) good_matches.push_back(matches[i]); //最佳匹配的特征点连成一线 Mat outimg; drawMatches(left, key2, right, key1, good_matches, outimg, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); imshow("outimg", outimg);2.图像配准这样子就得到了两幅待拼接图的匹配点集,接下来进行图像的配准,即将两张图像转换为同一坐标下,这里需要使用findHomography函数来求得变换矩阵。 但是需要注意的是,findHomography函数所要用到的点集是Point2f类型的,所以需要对刚得到的点集good_matches再做一次处理,使其转换为Point2f类型的点集。
//特征点配准 vector<Point2f>imagepoint1, imagepoint2; for(int i=0; i<good_matches.size(); i++) { imagepoint1.push_back(key1[good_matches[i].trainIdx].pt); imagepoint2.push_back(key2[good_matches[i].queryIdx].pt); }上述操作后,用imagepoint1, imagepoint2去求变换矩阵,并且实现图像配准。 值得注意的是findHomography函数的参数中选择CV_RANSAC。使用RANSAC算法继续筛选可靠地匹配点,这使得匹配点解更为精确。
//透视转换 Mat homo = findHomography(imagepoint1, imagepoint2, CV_RANSAC); imshow("homo", homo); //右图四个顶点坐标转换计算 CalcCorners(homo, right); Mat imageTransform; warpPerspective(right, imageTransform, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), left.rows)); imshow("imageTransform", imageTransform);3.图像拷贝拷贝的思路很简单,就是将左图直接拷贝到配准图上就可以了。
int dst_width = imageTransform.cols; int dst_height = imageTransform.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform.copyTo(dst(Rect(0, 0, imageTransform.cols, imageTransform.rows))); left.copyTo(dst(Rect(0, 0, left.cols, left.rows)));4.图像融合(去裂缝处理) OptimizeSeam(left, imageTransform, dst); imshow("dst", dst); waitKey(0);//优化两图的连接处,使得拼接自然void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst){ int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 double processWidth = img1.cols - start;//重叠区域的宽度 int rows = dst.rows; int cols = img1.cols; //注意,是列数*通道数 double alpha = 1;//img1中像素的权重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //获取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据 if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } }}三、完整代码#include <iostream>#include <opencv2/opencv.hpp>#include <opencv2/highgui.hpp>#include <opencv2/xfeatures2d.hpp>#include <opencv2/calib3d.hpp>#include <opencv2/imgproc.hpp>using namespace std;using namespace cv;using namespace cv::xfeatures2d;typedef struct{ Point2f left_top; Point2f left_bottom; Point2f right_top; Point2f right_bottom;}four_corners_t;four_corners_t corners;void CalcCorners(const Mat& H, const Mat& src){ double v2[] = { 0, 0, 1 };//左上角 double v1[3];//变换后的坐标值 Mat V2 = Mat(3, 1, CV_64FC1, v2); //列向量 Mat V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; //左上角(0,0,1) cout << "V2: " << V2 << endl; cout << "V1: " << V1 << endl; corners.left_top.x = v1[0] / v1[2]; corners.left_top.y = v1[1] / v1[2]; //左下角(0,src.rows,1) v2[0] = 0; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.left_bottom.x = v1[0] / v1[2]; corners.left_bottom.y = v1[1] / v1[2]; //右上角(src.cols,0,1) v2[0] = src.cols; v2[1] = 0; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_top.x = v1[0] / v1[2]; corners.right_top.y = v1[1] / v1[2]; //右下角(src.cols,src.rows,1) v2[0] = src.cols; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_bottom.x = v1[0] / v1[2]; corners.right_bottom.y = v1[1] / v1[2];}//优化两图的连接处,使得拼接自然void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst){ int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界 double processWidth = img1.cols - start;//重叠区域的宽度 int rows = dst.rows; int cols = img1.cols; //注意,是列数*通道数 double alpha = 1;//img1中像素的权重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //获取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据 if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } }}//计算配准图的四个顶点坐标int main(){ Mat left = imread("A.jpg"); Mat right =imread("B.jpg"); imshow("left", left); imshow("right", right); //1.特征点提取和匹配 //创建SURF对象 //create 参数 海森矩阵阈值 Ptr<SURF> surf; surf = SURF::create(800); //暴力匹配器 BFMatcher matcher; vector<KeyPoint> key1, key2; Mat c, d; //寻找特征点 surf->detectAndCompute(left, Mat(), key2, d); surf->detectAndCompute(right, Mat(), key1, c); //特征点对比 保存 vector<DMatch>matches; //使用暴力匹配器匹配特征点 保存 matcher.match(d, c, matches); //排序 从小到大 sort(matches.begin(), matches.end()); //保留最优的特征点收集 vector<DMatch>good_matches; int ptrPoint = std::min(50, (int)(matches.size()*0.15)); for(int i=0; i<ptrPoint; i++) good_matches.push_back(matches[i]); //最佳匹配的特征点连成一线 Mat outimg; drawMatches(left, key2, right, key1, good_matches, outimg, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); imshow("outimg", outimg); //2.图像配准 //特征点配准 vector<Point2f>imagepoint1, imagepoint2; for(int i=0; i<good_matches.size(); i++) { imagepoint1.push_back(key1[good_matches[i].trainIdx].pt); imagepoint2.push_back(key2[good_matches[i].queryIdx].pt); } //透视转换 Mat homo = findHomography(imagepoint1, imagepoint2, CV_RANSAC); imshow("homo", homo); //右图四个顶点坐标转换计算 CalcCorners(homo, right); Mat imageTransform; warpPerspective(right, imageTransform, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), left.rows)); imshow("imageTransform", imageTransform); //3.图像拷贝 int dst_width = imageTransform.cols; int dst_height = imageTransform.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform.copyTo(dst(Rect(0, 0, imageTransform.cols, imageTransform.rows))); left.copyTo(dst(Rect(0, 0, left.cols, left.rows))); //4.优化拼接最终结果图,去除黑边 OptimizeSeam(left, imageTransform, dst); imshow("dst", dst); waitKey(0); return 0;}上一篇:浅识WebGL和Three.js(webgl1.0)
下一篇:Vue父子组件生命周期执行顺序是什么?(vue父子组件生命周期钩子执行顺序)
友情链接: 武汉网站建设