位置: IT常识 - 正文

改进YOLO:YOLOv5结合swin transformer(改进的拼音)

编辑:rootadmin
改进YOLO:YOLOv5结合swin transformer 文章参考于芒果大神,在自己的数据集上跑了一下,改了一些出现的错误。一、配置yolov5_swin_transfomrer.yaml# Parametersnc: 10 # number of classesdepth_multiple: 0.33 # model depth multiplewidth_multiple: 0.50 # layer channel multipleanchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32# YOLOv5 v6.0 backbone by yoloairbackbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3STR, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3STR, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3STR, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3STR, [1024]], # 9 <--- ST2CSPB() Transformer module [-1, 1, SPPF, [512, 512]], # 9 ]# YOLOv5 v6.0 headhead: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]二、配置common.py文件

推荐整理分享改进YOLO:YOLOv5结合swin transformer(改进的拼音),希望有所帮助,仅作参考,欢迎阅读内容。

文章相关热门搜索词:改进英语,改进英语,改进工作作风 增强工作实效,改进工作作风 增强工作实效,改进什么,改进的近义词,改进英语,改进英语,内容如对您有帮助,希望把文章链接给更多的朋友!

在common.py中增加以下下代码:

class SwinTransformerBlock(nn.Module): def __init__(self, c1, c2, num_heads, num_layers, window_size=8): super().__init__() self.conv = None if c1 != c2: self.conv = Conv(c1, c2) # remove input_resolution self.blocks = nn.Sequential(*[SwinTransformerLayer(dim=c2, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)]) def forward(self, x): if self.conv is not None: x = self.conv(x) x = self.blocks(x) return xclass WindowAttention(nn.Module): def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) nn.init.normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) # print(attn.dtype, v.dtype) try: x = (attn @ v).transpose(1, 2).reshape(B_, N, C) except: #print(attn.dtype, v.dtype) x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return xclass Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return xclass SwinTransformerLayer(nn.Module): def __init__(self, dim, num_heads, window_size=8, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.SiLU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio # if min(self.input_resolution) <= self.window_size: # # if window size is larger than input resolution, we don't partition windows # self.shift_size = 0 # self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def create_mask(self, H, W): # calculate attention mask for SW-MSA img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) return attn_mask def forward(self, x): # reshape x[b c h w] to x[b l c] _, _, H_, W_ = x.shape Padding = False if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0: Padding = True # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.') pad_r = (self.window_size - W_ % self.window_size) % self.window_size pad_b = (self.window_size - H_ % self.window_size) % self.window_size x = F.pad(x, (0, pad_r, 0, pad_b)) # print('2', x.shape) B, C, H, W = x.shape L = H * W x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c # create mask from init to forward if self.shift_size > 0: attn_mask = self.create_mask(H, W).to(x.device) else: attn_mask = None shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w if Padding: x = x[:, :, :H_, :W_] # reverse padding return xclass C3STR(C3): # C3 module with SwinTransformerBlock() def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) num_heads = c_ // 32 self.m = SwinTransformerBlock(c_, c_, num_heads, n)三、yolo.py文件配置

在parse_model(d, ch)函数中增加C3STR

四、train.py文件配置

在if __name__ == '__main__':中更改cfg

改进YOLO:YOLOv5结合swin transformer(改进的拼音)

五、一些问题

1.NameError: name 'F' is not defined

在common.py中增加以下代码:

import torch.nn.functional as F

2.File "D:\Projects\yoloair-main\models\common.py", line 1519, in __init__ super().__init__(c1, c2, c2, n, shortcut, g, e) TypeError: __init__() takes from 3 to 7 positional arguments but 8 were given

去掉一个c2。

3.NameError: name 'window_partition' is not defined

def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows

4.NameError: name 'window_reverse' is not defined

ef window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x
本文链接地址:https://www.jiuchutong.com/zhishi/298904.html 转载请保留说明!

上一篇:unplugin-auto-import 和 unplugin-vue-components(unplugin-auto-import/vite)

下一篇:使用Axios前后端交互(超详细)建议点赞收藏(前端axios请求怎么中断)

  • 顺丰寄付现结怎么线上支付(顺丰寄付现结怎么改成寄付月结)

    顺丰寄付现结怎么线上支付(顺丰寄付现结怎么改成寄付月结)

  • word空白页怎么自制封面(word空白页怎么删除最后一页)

    word空白页怎么自制封面(word空白页怎么删除最后一页)

  • 抖音上怎么把一张照片怎么做成视频(抖音上怎么把一个人永久拉黑)

    抖音上怎么把一张照片怎么做成视频(抖音上怎么把一个人永久拉黑)

  • npn导通条件(npn什么电平导通)

    npn导通条件(npn什么电平导通)

  • word文档怎么调字上下间距(word文档怎么调整行高和列宽)

    word文档怎么调字上下间距(word文档怎么调整行高和列宽)

  • 云台摄像头什么意思(云台摄像头与普通摄像头有何区别)

    云台摄像头什么意思(云台摄像头与普通摄像头有何区别)

  • 平板和ipad一样吗(平板和ipad是一样的吗)

    平板和ipad一样吗(平板和ipad是一样的吗)

  • 小电充电宝买了可以退吗(小电充电宝买了怎么不可以充电)

    小电充电宝买了可以退吗(小电充电宝买了怎么不可以充电)

  • 手机删不了照片怎么回事(为什么华为手机删不了照片)

    手机删不了照片怎么回事(为什么华为手机删不了照片)

  • 哔哩哔哩是哪个国家的(哔哩哔哩是哪个系)

    哔哩哔哩是哪个国家的(哔哩哔哩是哪个系)

  • 计算机网络系统是一个什么系统(计算机网络系统按其覆盖范围可分成三类)

    计算机网络系统是一个什么系统(计算机网络系统按其覆盖范围可分成三类)

  • 固态硬盘sata2和3的区别(固态硬盘sata2和3有什么区别)

    固态硬盘sata2和3的区别(固态硬盘sata2和3有什么区别)

  • 滴滴请假报备功能在哪里(滴滴休息报备)

    滴滴请假报备功能在哪里(滴滴休息报备)

  • 快门的定义是什么(何为快门)

    快门的定义是什么(何为快门)

  • 手机电话号码忘了怎么办(手机电话号码忘记了怎么查?)

    手机电话号码忘了怎么办(手机电话号码忘记了怎么查?)

  • 手机内存占用过高怎么办(手机内存占用过多会导致运行卡吗)

    手机内存占用过高怎么办(手机内存占用过多会导致运行卡吗)

  • 苹果显示1x怎么改4g(苹果显示1x怎么回事不能用)

    苹果显示1x怎么改4g(苹果显示1x怎么回事不能用)

  • 如何注册微信号(手机号如何注册微信号)

    如何注册微信号(手机号如何注册微信号)

  • 淘宝异地发货怎么投诉(淘宝店异地发货正常吗)

    淘宝异地发货怎么投诉(淘宝店异地发货正常吗)

  • 抖音可以看见足迹吗(抖音能看到查看记录吗)

    抖音可以看见足迹吗(抖音能看到查看记录吗)

  • Ps图层怎么用(ps图层怎么用正片叠底)

    Ps图层怎么用(ps图层怎么用正片叠底)

  • 如何自己制作视频(如何自己制作视频教程)

    如何自己制作视频(如何自己制作视频教程)

  • 手机qq怎么弄空白名字(手机qq怎么弄成空白的)

    手机qq怎么弄空白名字(手机qq怎么弄成空白的)

  • 不能错过的 ChatGPT4.0 (附体验方法)(不能错过的只有你下架了吗)

    不能错过的 ChatGPT4.0 (附体验方法)(不能错过的只有你下架了吗)

  • 基于OpenVINO在C++中部署YOLOv5-Seg实例分割模型(openvino使用)

    基于OpenVINO在C++中部署YOLOv5-Seg实例分割模型(openvino使用)

  • mtype命令  mtools工具(linux mput命令)

    mtype命令 mtools工具(linux mput命令)

  • 开外经证需要预缴税几个点
  • 印花税的实质
  • 亏损企业如何填报企业所得税
  • 待抵扣税金怎么算
  • 房产税的纳税义务人是征税范围内房屋产权所有人
  • 租赁厂房电费
  • 车辆租赁发票税点
  • 自然人城建税减半征收
  • 境外企业在境内取得的收入所得税
  • 盘盈的存货一般作为什么处理
  • 签订合同未履行属于什么行为
  • 购进出口商品的会计分录
  • 商家促销怎么做
  • 车辆固定资产清理
  • 总公司发工资子公司代缴个税
  • 提成工资可以扣发吗?
  • 补充养老保险税收规定扣除率
  • 白酒五行属火还是水
  • 汇票贴息会计分录
  • 建账实收资本怎么处理
  • 待抵扣进项税 待认证进项税
  • 研发费用直接投入占比过高税务预警
  • 劳务市场零工临时工
  • 暂停装修
  • 采购不签合同
  • 余款退回会计分录
  • 小规模纳税人的专票可以抵税吗
  • 电脑上一键复制是哪个键
  • 代理公司变更收费标准
  • 异地成立分公司的流程和要求
  • 斑鹿,滕波尔国家公园,印度 (© Ondrej Prosicky/Shutterstock)
  • 未来社区政策支持
  • react 入门教程
  • php上传照片
  • 计提支付公积金
  • 国际货运代理公司有哪些?
  • jwt中的jti
  • 个税手续费增值税
  • python多进程间通信
  • db2udb
  • 发票管理办法是法律吗
  • 未开票收入确认错属期滞纳金怎么办
  • 不同企业可以开专票吗
  • 电脑买回来可以直接用吗
  • 职工福利费的开支是什么
  • 在建工程包括哪些大类科目
  • 在建工程进项税额抵扣最新通知
  • 传媒公司的骗局把戏
  • 会计分录怎么用
  • 验资户和基本户账号一致么
  • 逾期纳税申报会被罚款吗
  • 生产成本增加记哪边
  • 车间管理人员工资属于间接费用吗
  • 明细账建账的步骤
  • mysql备份与恢复数据库
  • centos下安装jdk
  • 微软宣布Q3推出MRTKV3工具包
  • win8.1怎么升级到win11
  • Fedora 9 texlive + vim-latex + kile安装配置
  • windows media player播放不了mp4
  • 怎样禁用ie
  • reg.exec
  • win7系统声音设置方法
  • win10系统打不开此电脑和文件夹
  • win7指令代码
  • 清理ie八
  • Strumpy Shader Editor入门教程
  • bootstrap需要学多久
  • Node.js中的construct构造函数
  • unity3d操作
  • javascript入门教程
  • jquery移动div
  • java arraysort
  • 不使用flash
  • Javascript Object.extend
  • 广东省地方税务局历任局长
  • 河南税务局退税流程
  • 一般纳税人企业所得税怎么征收
  • 收回闲置土地使用权案例
  • 一般纳税人增值税怎么算
  • 免责声明:网站部分图片文字素材来源于网络,如有侵权,请及时告知,我们会第一时间删除,谢谢! 邮箱:opceo@qq.com

    鄂ICP备2023003026号

    网站地图: 企业信息 工商信息 财税知识 网络常识 编程技术

    友情链接: 武汉网站建设