位置: IT常识 - 正文
推荐整理分享python爬取网站数据(含代码和讲解)(python爬取网站数据毕业论文),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:Python爬取网站数据库技巧,python爬取网站数据并导入excel,python爬取网站数据毕业论文,python爬取网站数据,python爬取网站数据并做成表格,python爬取网站数据,python爬取网站数据,python爬取网站数据,内容如对您有帮助,希望把文章链接给更多的朋友!
提示:本次爬取是利用xpath进行,按文章的顺序走就OK的;
文章目录前言
一、数据采集的准备
1.观察url规律
2.设定爬取位置和路径(xpath)
二、数据采集
1. 建立存放数据的dataframe
2. 开始爬取
3. 把数据导出成csv表格
总结
这次爬取的网站是房天下网站;
其中包含很多楼盘信息:https://newhouse.fang.com/house/s/b81-b91/
我在网站上进行了一步筛选,即选取北京及北京周边的房源,各位要是想爬取其他城市的房源信息也很简单,改一下url信息即可。
一、数据采集的准备1.观察url规律观察到北京及周边地区的房源有很多网页,翻几页就能发现url的规律:
网址就是:https://newhouse.fang.com/house/s/ + b81-b9X + / ;其中X是页码
利用for循环遍历所有网页:
for i in range(33): # 每页20个小区,共648个小区 url = 'https://newhouse.fang.com/house/s/b81-b9' + str(i+1) + '/'pip 安装fake_useragent库:
fake-useragent可以伪装生成headers请求头中的User Agent值,将爬虫伪装成浏览器正常操作。
!pip install fake_useragent导入接下来会用到的包:
## 导包from lxml import etreeimport requestsfrom fake_useragent import UserAgentimport pandas as pdimport randomimport timeimport csv设置请求参数:需要大家替换的有'cookie'和'referer'两项的值:'cookie':每次访问网站服务器的时候,服务器都会在本地设置cookie,表明访问者的身份。记得每次使用时,都要按照固定方法人工填入一个 cookie。
'referer':请求参数,标识请求是从哪个页面过来的。
# 设置请求头参数:User-Agent, cookie, refererheaders = { 'User-Agent' : UserAgent().random, 'cookie' : "global_cookie=kxyzkfz09n3hnn14le9z39b9g3ol3wgikwn; city=www; city.sig=OGYSb1kOr8YVFH0wBEXukpoi1DeOqwvdseB7aTrJ-zE; __utmz=147393320.1664372701.10.4.utmcsr=mp.csdn.net|utmccn=(referral)|utmcmd=referral|utmcct=/mp_blog/creation/editor; csrfToken=KUlWFFT_pcJiH1yo3qPmzIc_; g_sourcepage=xf_lp^lb_pc'; __utmc=147393320; unique_cookie=U_bystp5cfehunxkbjybklkryt62fl8mfox4z*3; __utma=147393320.97036532.1606372168.1664431058.1664433514.14; __utmt_t0=1; __utmt_t1=1; __utmt_t2=1; __utmt_t3=1; __utmt_t4=1; __utmb=147393320.5.10.1664433514", # 设置从何处跳转过来 'referer': 'https://newhouse.fang.com/house/s/b81-b91/'}具体更改方法请见链接:
【腾讯文档】'cookie'和 'referer'的更改方法:https://docs.qq.com/doc/DR2RzUkJTQXJ5ZGt6
只能走链接了,一直审核不过555~
2.设定爬取位置和路径(xpath)因为爬取数据主要依托于'目标数据所在位置的确定’,所以一定先要搞清楚目标数据的位置(位于div的哪一块);
先发送请求:
url = 'https://newhouse.fang.com/house/s/b81-b91/'# 首页网址URLpage_text = requests.get(url=url, headers=headers).text# 请求发送tree = etree.HTML(page_text)#数据解析我想爬取的数据主要就是:楼盘名称、评论数、房屋面积、详细地址、所在区域、均价 5项数据。
代码已经贴在下面了,具体方法描述还是走个链接:
【腾讯文档】获取具体爬取位置的讲解https://docs.qq.com/doc/DR3BFRW1lVGFRU0Na
# 小区名称name = [i.strip() for i in tree.xpath("//div[@class='nlcd_name']/a/text()")]print(name)print(len(name))# 评论数commentCounts = tree.xpath("//span[@class='value_num']/text()")print(commentCounts)print(len(commentCounts))# 房屋面积buildingarea = [i.strip() for i in tree.xpath("//div[@class='house_type clearfix']/text()")]print(buildingarea)print(len(buildingarea))# 详细地址detailAddress = tree.xpath("//div[@class='address']/a/@title")print(detailAddress)print(len(detailAddress))# 所在区district = [i.strip() for i in tree.xpath("//div[@class='address']//span[@class='sngrey']/text()")]print(district)print(len(district))# 均价num = tree.xpath("//div[@class='nlc_details']/div[@class='nhouse_price']/span/text() | //div[@class='nlc_details']/div[@class='nhouse_price']/i/text()")unit = tree.xpath("//div[@class='nlc_details']/div[@class='nhouse_price']/em/text()")price = [i+j for i,j in zip(num, unit)]print(price)print(len(price))此时采集到的数据还包含着:[]方括号、—横杠、“平米”等符号或者单位,所以要对数据进行简单的split处理,把真正需要的数据提取出来:
# 评论数处理commentCounts = [int(i.split('(')[1].split('条')[0]) for i in commentCounts]print(commentCounts)# 详细地址处理detailAddress = [i.split(']')[1] for i in detailAddress]print(detailAddress)# 所在区字段处理district = [i.split('[')[1].split(']')[0] for i in district]print(district)# 房屋面积处理t = []for i in buildingarea: if i != '/' and i != '': t.append(i.split('—')[1].split('平米')[0])print(t)print(len(t))二、数据采集1. 建立存放数据的dataframedf = pd.DataFrame(columns = ['小区名称', '详细地址', '所在区', '均价', '评论数'])df2. 开始爬取这里图方便就只爬取了前10页,因为后面的房源就经常少信息,要么没有面积信息,要么没有所在区域。
for k in range(10): url = 'https://newhouse.fang.com/house/s/b81-b9' + str(k+1) + '/' page_text = requests.get(url=url, headers=headers).text #请求发送 tree = etree.HTML(page_text) #数据解析 # 小区名称 name = [i.strip() for i in tree.xpath("//div[@class='nlcd_name']/a/text()")] # 评论数 commentCounts = tree.xpath("//span[@class='value_num']/text()") # 详细地址 detailAddress = tree.xpath("//div[@class='address']/a/@title") # 所在区 district = [i.strip() for i in tree.xpath("//div[@class='address']//text()")] # 均价 num = tree.xpath("//div[@class='nlc_details']/div[@class='nhouse_price']/span/text() | //div[@class='nlc_details']/div[@class='nhouse_price']/i/text()") unit = tree.xpath("//div[@class='nlc_details']/div[@class='nhouse_price']/em/text()") price = [i+j for i,j in zip(num, unit)] #评论数处理 commentCounts = [int(i.split('(')[1].split('条')[0]) for i in commentCounts] #详细地址处理 tmp1 = [] for i in detailAddress: if ']' in i: tmp1.append(i.split(']')[1]) continue tmp1.append(i) detailAddress = tmp1 #所在区处理 tmp2 = [] for i in district: if ']' in i and '[' in i: tmp2.append(i.split(']')[0].split('[')[1]) district = tmp2 dic = {'小区名称':name, '详细地址':detailAddress, '所在区':district, '均价':price, '评论数':commentCounts} df2 = pd.DataFrame(dic) df = pd.concat([df,df2], axis=0) print('第{}页爬取成功, 共{}条数据'.format(k+1, len(df2)))print('全部数据爬取成功')3. 把数据导出成csv表格df.to_csv('北京小区数据信息.csv',index=None)总结说实话,本文使用的爬取方法简单而且信息正确,但是存在一些不足,比如面对楼盘的部分信息空缺时,就无法按照null来采集,而是会报错,所以我现有的解决方法就是在循环中人工去设置条件,跳过空缺信息。
我会继续优化这个方法的~
上一篇:从零开始,三分钟内用Python快速自建一个私有化 ChatGpt 聊天机器人网站(从零开始文章)
下一篇:Vue3中 内置组件 Teleport 详解(vue的内置组件)
友情链接: 武汉网站建设