位置: IT常识 - 正文
推荐整理分享Diffusion扩散模型学习1——Pytorch搭建DDPM实现图片生成(diffusion扩散模型训练时间),希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:diffusion扩散模型是什么,diffusion扩散模型是哪一年的,diffusion扩散模型 nlp,diffusion扩散模型是哪一年的,diffusion扩散模型应用,diffusion扩散模型是哪一年的,diffusion扩散模型训练时间,diffusion扩散模型应用,内容如对您有帮助,希望把文章链接给更多的朋友!
我又死了我又死了我又死了!
源码下载地址https://github.com/bubbliiiing/ddpm-pytorch
喜欢的可以点个star噢。
网络构建一、什么是Diffusion如上图所示。DDPM模型主要分为两个过程: 1、Forward加噪过程(从右往左),数据集的真实图片中逐步加入高斯噪声,最终变成一个杂乱无章的高斯噪声,这个过程一般发生在训练的时候。加噪过程满足一定的数学规律。 2、Reverse去噪过程(从左往右),指对加了噪声的图片逐步去噪,从而还原出真实图片,这个过程一般发生在预测生成的时候。尽管在这里说的是加了噪声的图片,但实际去预测生成的时候,是随机生成一个高斯噪声来去噪。去噪的时候不断根据XtX_tXt的图片生成Xt−1X_{t-1}Xt−1的噪声,从而实现图片的还原。
1、加噪过程Forward加噪过程主要符合如下的公式: xt=αtxt−1+1−αtz1x_t=\sqrt{\alpha_t} x_{t-1}+\sqrt{1-\alpha_t} z_{1}xt=αtxt−1+1−αtz1 其中αt\sqrt{\alpha_t}αt是预先设定好的超参数,被称为Noise schedule,通常是小于1的值,在论文中αt\alpha_tαt的值从0.9999到0.998。ϵt−1∼N(,1)\epsilon_{t-1} \sim N(0, 1)ϵt−1∼N(0,1)是高斯噪声。由公式(1)迭代推导。
xt=at(at−1xt−2+1−αt−1z2)+1−αtz1=atat−1xt−2+(at(1−αt−1)z2+1−αtz1)x_t=\sqrt{a_t}\left(\sqrt{a_{t-1}} x_{t-2}+\sqrt{1-\alpha_{t-1}} z_2\right)+\sqrt{1-\alpha_t} z_1=\sqrt{a_t a_{t-1}} x_{t-2}+\left(\sqrt{a_t\left(1-\alpha_{t-1}\right)} z_2+\sqrt{1-\alpha_t} z_1\right)xt=at(at−1xt−2+1−αt−1z2)+1−αtz1=atat−1xt−2+(at(1−αt−1)z2+1−αtz1)
其中每次加入的噪声都服从高斯分布 z1,z2,…∼N(,1)z_1, z_2, \ldots \sim \mathcal{N}(0, 1)z1,z2,…∼N(0,1),两个高斯分布的相加高斯分布满足公式:N(,σ12)+N(,σ22)∼N(,(σ12+σ22))\mathcal{N}\left(0, \sigma_1^2 \right)+\mathcal{N}\left(0, \sigma_2^2 \right) \sim \mathcal{N}\left(0,\left(\sigma_1^2+\sigma_2^2\right) \right)N(0,σ12)+N(0,σ22)∼N(0,(σ12+σ22)),因此,得到xtx_txt的公式为: xt=atat−1xt−2+1−αtαt−1z2x_t = \sqrt{a_t a_{t-1}} x_{t-2}+\sqrt{1-\alpha_t \alpha_{t-1}} z_2xt=atat−1xt−2+1−αtαt−1z2 因此不断往里面套,就能发现规律了,其实就是累乘 可以直接得出xx_0x0到xtx_txt的公式: xt=αt‾x+1−αt‾ztx_t=\sqrt{\overline{\alpha_t}} x_0+\sqrt{1-\overline{\alpha_t}} z_txt=αtx0+1−αtzt
其中αt‾=∏itαi\overline{\alpha_t}=\prod_i^t \alpha_iαt=∏itαi,这是随Noise schedule设定好的超参数,zt−1∼N(,1)z_{t-1} \sim N(0, 1)zt−1∼N(0,1)也是一个高斯噪声。通过上述两个公式,我们可以不断的将图片进行破坏加噪。
2、去噪过程反向过程就是通过估测噪声,多次迭代逐渐将被破坏的xtx_txt恢复成xx_0x0,在恢复时刻,我们已经知道的是xtx_txt,这是图片在ttt时刻的噪声图。一下子从xtx_txt恢复成xx_0x0是不可能的,我们只能一步一步的往前推,首先从xtx_txt恢复成xt−1x_{t-1}xt−1。根据贝叶斯公式,已知xtx_txt反推xt−1x_{t-1}xt−1: q(xt−1∣xt,x)=q(xt∣xt−1,x)q(xt−1∣x)q(xt∣x)q\left(x_{t-1} \mid x_t, x_0\right)=q\left(x_t \mid x_{t-1}, x_0\right) \frac{q\left(x_{t-1} \mid x_0\right)}{q\left(x_t \mid x_0\right)}q(xt−1∣xt,x0)=q(xt∣xt−1,x0)q(xt∣x0)q(xt−1∣x0) 右边的三个东西都可以从x_0开始推得到: q(xt−1∣x)=aˉt−1x+1−aˉt−1z∼N(aˉt−1x,1−aˉt−1)q\left(x_{t-1} \mid x_0\right)=\sqrt{\bar{a}_{t-1}} x_0+\sqrt{1-\bar{a}_{t-1}} z \sim \mathcal{N}\left(\sqrt{\bar{a}_{t-1}} x_0, 1-\bar{a}_{t-1}\right)q(xt−1∣x0)=aˉt−1x0+1−aˉt−1z∼N(aˉt−1x0,1−aˉt−1) q(xt∣x)=aˉtx+1−αˉtz∼N(aˉtx,1−αˉt)q\left(x_t \mid x_0\right) = \sqrt{\bar{a}_t} x_0+\sqrt{1-\bar{\alpha}_t} z \sim \mathcal{N}\left(\sqrt{\bar{a}_t} x_0 , 1-\bar{\alpha}_t\right)q(xt∣x0)=aˉtx0+1−αˉtz∼N(aˉtx0,1−αˉt) q(xt∣xt−1,x)=atxt−1+1−αtz∼N(atxt−1,1−αt)q\left(x_t \mid x_{t-1}, x_0\right)=\sqrt{a_t} x_{t-1}+\sqrt{1-\alpha_t} z \sim \mathcal{N}\left(\sqrt{a_t} x_{t-1}, 1-\alpha_t\right) \\q(xt∣xt−1,x0)=atxt−1+1−αtz∼N(atxt−1,1−αt) 因此,由于右边三个东西均满足正态分布,q(xt−1∣xt,x)q\left(x_{t-1} \mid x_t, x_0\right)q(xt−1∣xt,x0)满足分布如下: ∝exp(−12((xt−αtxt−1)2βt+(xt−1−αˉt−1x)21−αˉt−1−(xt−αˉtx)21−αˉt))\propto \exp \left(-\frac{1}{2}\left(\frac{\left(x_t-\sqrt{\alpha_t} x_{t-1}\right)^2}{\beta_t}+\frac{\left(x_{t-1}-\sqrt{\bar{\alpha}_{t-1}} x_0\right)^2}{1-\bar{\alpha}_{t-1}}-\frac{\left(x_t-\sqrt{\bar{\alpha}_t} x_0\right)^2}{1-\bar{\alpha}_t}\right)\right)∝exp(−21(βt(xt−αtxt−1)2+1−αˉt−1(xt−1−αˉt−1x0)2−1−αˉt(xt−αˉtx0)2)) 把标准正态分布展开后,乘法就相当于加,除法就相当于减,把他们汇总 接下来继续化简,咱们现在要求的是上一时刻的分布 ∝exp(−12((xt−αtxt−1)2βt+(xt−1−αˉt−1x)21−αˉt−1−(xt−αˉtx)21−αˉt))=exp(−12(xt2−2αtxtxt−1+αtxt−12βt+xt−12−2αˉt−1xxt−1+αˉt−1x21−αˉt−1−(xt−αˉtx)21−αˉt))=exp(−12((αtβt+11−αˉt−1)xt−12−(2αtβtxt+2αˉt−11−αˉt−1x)xt−1+C(xt,x)))\begin{aligned} & \propto \exp \left(-\frac{1}{2}\left(\frac{\left(x_t-\sqrt{\alpha_t} x_{t-1}\right)^2}{\beta_t}+\frac{\left(x_{t-1}-\sqrt{\bar{\alpha}_{t-1}} x_0\right)^2}{1-\bar{\alpha}_{t-1}}-\frac{\left(x_t-\sqrt{\bar{\alpha}_t} x_0\right)^2}{1-\bar{\alpha}_t}\right)\right) \\ & =\exp \left(-\frac{1}{2}\left(\frac{x_t^2-2 \sqrt{\alpha_t} x_t x_{t-1}+\alpha_t x_{t-1}^2}{\beta_t}+\frac{x_{t-1}^2-2 \sqrt{\bar{\alpha}_{t-1}} x_0 x_{t-1}+\bar{\alpha}_{t-1} x_0^2}{1-\bar{\alpha}_{t-1}}-\frac{\left(x_t-\sqrt{\bar{\alpha}_t} x_0\right)^2}{1-\bar{\alpha}_t}\right)\right) \\ & =\exp \left(-\frac{1}{2}\left(\left(\frac{\alpha_t}{\beta_t}+\frac{1}{1-\bar{\alpha}_{t-1}}\right) x_{t-1}^2-\left(\frac{2 \sqrt{\alpha_t}}{\beta_t} x_t+\frac{2 \sqrt{\bar{\alpha}_{t-1}}}{1-\bar{\alpha}_{t-1}} x_0\right) x_{t-1}+C\left(x_t, x_0\right)\right)\right) \end{aligned}∝exp(−21(βt(xt−αtxt−1)2+1−αˉt−1(xt−1−αˉt−1x0)2−1−αˉt(xt−αˉtx0)2))=exp(−21(βtxt2−2αtxtxt−1+αtxt−12+1−αˉt−1xt−12−2αˉt−1x0xt−1+αˉt−1x02−1−αˉt(xt−αˉtx0)2))=exp(−21((βtαt+1−αˉt−11)xt−12−(βt2αtxt+1−αˉt−12αˉt−1x0)xt−1+C(xt,x0))) 正态分布满足公式,exp(−(x−μ)22σ2)=exp(−12(1σ2x2−2μσ2x+μ2σ2))\exp \left(-\frac{(x-\mu)^2}{2 \sigma^2}\right)=\exp \left(-\frac{1}{2}\left(\frac{1}{\sigma^2} x^2-\frac{2 \mu}{\sigma^2} x+\frac{\mu^2}{\sigma^2}\right)\right)exp(−2σ2(x−μ)2)=exp(−21(σ21x2−σ22μx+σ2μ2)),其中σ\sigmaσ就是方差,μ\muμ就是均值,配方后我们就可以获得均值和方差。
此时的均值为:μ~t(xt,x)=αt(1−αˉt−1)1−αˉtxt+αˉt−1βt1−αˉtx\tilde{\mu}_t\left(x_t, x_0\right)=\frac{\sqrt{\alpha_t}\left(1-\bar{\alpha}_{t-1}\right)}{1-\bar{\alpha}_t} x_t+\frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1-\bar{\alpha}_t} x_0μ~t(xt,x0)=1−αˉtαt(1−αˉt−1)xt+1−αˉtαˉt−1βtx0。根据之前的公式,xt=αt‾x+1−αt‾ztx_t=\sqrt{\overline{\alpha_t}} x_0+\sqrt{1-\overline{\alpha_t}} z_txt=αtx0+1−αtzt,我们可以使用xtx_txt反向估计xx_0x0得到xx_0x0满足分布x=1αˉt(xt−1−αˉtzt)x_0=\frac{1}{\sqrt{\bar{\alpha}_t}}\left(\mathrm{x}_t-\sqrt{1-\bar{\alpha}_t} z_t\right)x0=αˉt1(xt−1−αˉtzt)。最终得到均值为μ~t=1at(xt−βt1−aˉtzt)\tilde{\mu}_t=\frac{1}{\sqrt{a_t}}\left(x_t-\frac{\beta_t}{\sqrt{1-\bar{a}_t}} z_t\right)μ~t=at1(xt−1−aˉtβtzt) ,ztz_tzt代表t时刻的噪音是什么。由ztz_tzt无法直接获得,网络便通过当前时刻的xtx_txt经过神经网络计算ztz_tzt。ϵθ(xt,t)\epsilon_\theta\left(x_t, t\right)ϵθ(xt,t)也就是上面提到的ztz_tzt。ϵθ\epsilon_\thetaϵθ代表神经网络。 xt−1=1αt(xt−1−αt1−αˉtϵθ(xt,t))+σtzx_{t-1}=\frac{1}{\sqrt{\alpha_t}}\left(x_t-\frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_\theta\left(x_t, t\right)\right)+\sigma_t zxt−1=αt1(xt−1−αˉt1−αtϵθ(xt,t))+σtz 由于加噪过程中的真实噪声ϵ\epsilonϵ在复原过程中是无法获得的,因此DDPM的关键就是训练一个由xtx_txt和ttt估测橾声的模型 ϵθ(xt,t)\epsilon_\theta\left(x_t, t\right)ϵθ(xt,t),其中θ\thetaθ就是模型的训练参数,σt\sigma_tσt 也是一个高斯噪声 σt∼N(,1)\sigma_t \sim N(0,1)σt∼N(0,1),用于表示估测与实际的差距。在DDPM中,使用U-Net作为估测噪声的模型。
本质上,我们就是训练这个Unet模型,该模型输入为xtx_txt和ttt,输出为xtx_txt时刻的高斯噪声。即利用xtx_txt和ttt预测这一时刻的高斯噪声。这样就可以一步一步的再从噪声回到真实图像。
二、DDPM网络的构建(Unet网络的构建)上图是典型的Unet模型结构,仅仅作为示意图,里面具体的数字同学们无需在意,和本文的学习无关。在本文中,Unet的输入和输出shape相同,通道均为3(一般为RGB三通道),宽高相同。
本质上,DDPM最重要的工作就是训练Unet模型,该模型输入为xtx_txt和ttt,输出为xt−1x_{t-1}xt−1时刻的高斯噪声。即利用xtx_txt和ttt预测上一时刻的高斯噪声。这样就可以一步一步的再从噪声回到真实图像。
假设我们需要生成一个[64, 64, 3]的图像,在ttt时刻,我们有一个xtx_txt噪声图,该噪声图的的shape也为[64, 64, 3],我们将它和ttt一起输入到Unet中。Unet的输出为xt−1x_{t-1}xt−1时刻的[64, 64, 3]的噪声。
实现代码如下,代码中的特征提取模块为残差结构,方便优化:
import mathimport torchimport torch.nn as nnimport torch.nn.functional as Fdef get_norm(norm, num_channels, num_groups): if norm == "in": return nn.InstanceNorm2d(num_channels, affine=True) elif norm == "bn": return nn.BatchNorm2d(num_channels) elif norm == "gn": return nn.GroupNorm(num_groups, num_channels) elif norm is None: return nn.Identity() else: raise ValueError("unknown normalization type")#------------------------------------------## 计算时间步长的位置嵌入。# 一半为sin,一半为cos。#------------------------------------------#class PositionalEmbedding(nn.Module): def __init__(self, dim, scale=1.0): super().__init__() assert dim % 2 == 0 self.dim = dim self.scale = scale def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / half_dim emb = torch.exp(torch.arange(half_dim, device=device) * -emb) # x * self.scale和emb外积 emb = torch.outer(x * self.scale, emb) emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb#------------------------------------------## 下采样层,一个步长为2x2的卷积#------------------------------------------#class Downsample(nn.Module): def __init__(self, in_channels): super().__init__() self.downsample = nn.Conv2d(in_channels, in_channels, 3, stride=2, padding=1) def forward(self, x, time_emb, y): if x.shape[2] % 2 == 1: raise ValueError("downsampling tensor height should be even") if x.shape[3] % 2 == 1: raise ValueError("downsampling tensor width should be even") return self.downsample(x)#------------------------------------------## 上采样层,Upsample+卷积#------------------------------------------#class Upsample(nn.Module): def __init__(self, in_channels): super().__init__() self.upsample = nn.Sequential( nn.Upsample(scale_factor=2, mode="nearest"), nn.Conv2d(in_channels, in_channels, 3, padding=1), ) def forward(self, x, time_emb, y): return self.upsample(x)#------------------------------------------## 使用Self-Attention注意力机制# 做一个全局的Self-Attention#------------------------------------------#class AttentionBlock(nn.Module): def __init__(self, in_channels, norm="gn", num_groups=32): super().__init__() self.in_channels = in_channels self.norm = get_norm(norm, in_channels, num_groups) self.to_qkv = nn.Conv2d(in_channels, in_channels * 3, 1) self.to_out = nn.Conv2d(in_channels, in_channels, 1) def forward(self, x): b, c, h, w = x.shape q, k, v = torch.split(self.to_qkv(self.norm(x)), self.in_channels, dim=1) q = q.permute(0, 2, 3, 1).view(b, h * w, c) k = k.view(b, c, h * w) v = v.permute(0, 2, 3, 1).view(b, h * w, c) dot_products = torch.bmm(q, k) * (c ** (-0.5)) assert dot_products.shape == (b, h * w, h * w) attention = torch.softmax(dot_products, dim=-1) out = torch.bmm(attention, v) assert out.shape == (b, h * w, c) out = out.view(b, h, w, c).permute(0, 3, 1, 2) return self.to_out(out) + x#------------------------------------------## 用于特征提取的残差结构#------------------------------------------#class ResidualBlock(nn.Module): def __init__( self, in_channels, out_channels, dropout, time_emb_dim=None, num_classes=None, activation=F.relu, norm="gn", num_groups=32, use_attention=False, ): super().__init__() self.activation = activation self.norm_1 = get_norm(norm, in_channels, num_groups) self.conv_1 = nn.Conv2d(in_channels, out_channels, 3, padding=1) self.norm_2 = get_norm(norm, out_channels, num_groups) self.conv_2 = nn.Sequential( nn.Dropout(p=dropout), nn.Conv2d(out_channels, out_channels, 3, padding=1), ) self.time_bias = nn.Linear(time_emb_dim, out_channels) if time_emb_dim is not None else None self.class_bias = nn.Embedding(num_classes, out_channels) if num_classes is not None else None self.residual_connection = nn.Conv2d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity() self.attention = nn.Identity() if not use_attention else AttentionBlock(out_channels, norm, num_groups) def forward(self, x, time_emb=None, y=None): out = self.activation(self.norm_1(x)) # 第一个卷积 out = self.conv_1(out) # 对时间time_emb做一个全连接,施加在通道上 if self.time_bias is not None: if time_emb is None: raise ValueError("time conditioning was specified but time_emb is not passed") out += self.time_bias(self.activation(time_emb))[:, :, None, None] # 对种类y_emb做一个全连接,施加在通道上 if self.class_bias is not None: if y is None: raise ValueError("class conditioning was specified but y is not passed") out += self.class_bias(y)[:, :, None, None] out = self.activation(self.norm_2(out)) # 第二个卷积+残差边 out = self.conv_2(out) + self.residual_connection(x) # 最后做个Attention out = self.attention(out) return out#------------------------------------------## Unet模型#------------------------------------------#class UNet(nn.Module): def __init__( self, img_channels, base_channels=128, channel_mults=(1, 2, 2, 2), num_res_blocks=2, time_emb_dim=128 * 4, time_emb_scale=1.0, num_classes=None, activation=F.silu, dropout=0.1, attention_resolutions=(1,), norm="gn", num_groups=32, initial_pad=0, ): super().__init__() # 使用到的激活函数,一般为SILU self.activation = activation # 是否对输入进行padding self.initial_pad = initial_pad # 需要去区分的类别数 self.num_classes = num_classes # 对时间轴输入的全连接层 self.time_mlp = nn.Sequential( PositionalEmbedding(base_channels, time_emb_scale), nn.Linear(base_channels, time_emb_dim), nn.SiLU(), nn.Linear(time_emb_dim, time_emb_dim), ) if time_emb_dim is not None else None # 对输入图片的第一个卷积 self.init_conv = nn.Conv2d(img_channels, base_channels, 3, padding=1) # self.downs用于存储下采样用到的层,首先利用ResidualBlock提取特征 # 然后利用Downsample降低特征图的高宽 self.downs = nn.ModuleList() self.ups = nn.ModuleList() # channels指的是每一个模块处理后的通道数 # now_channels是一个中间变量,代表中间的通道数 channels = [base_channels] now_channels = base_channels for i, mult in enumerate(channel_mults): out_channels = base_channels * mult for _ in range(num_res_blocks): self.downs.append( ResidualBlock( now_channels, out_channels, dropout, time_emb_dim=time_emb_dim, num_classes=num_classes, activation=activation, norm=norm, num_groups=num_groups, use_attention=i in attention_resolutions, ) ) now_channels = out_channels channels.append(now_channels) if i != len(channel_mults) - 1: self.downs.append(Downsample(now_channels)) channels.append(now_channels) # 可以看作是特征整合,中间的一个特征提取模块 self.mid = nn.ModuleList( [ ResidualBlock( now_channels, now_channels, dropout, time_emb_dim=time_emb_dim, num_classes=num_classes, activation=activation, norm=norm, num_groups=num_groups, use_attention=True, ), ResidualBlock( now_channels, now_channels, dropout, time_emb_dim=time_emb_dim, num_classes=num_classes, activation=activation, norm=norm, num_groups=num_groups, use_attention=False, ), ] ) # 进行上采样,进行特征融合 for i, mult in reversed(list(enumerate(channel_mults))): out_channels = base_channels * mult for _ in range(num_res_blocks + 1): self.ups.append(ResidualBlock( channels.pop() + now_channels, out_channels, dropout, time_emb_dim=time_emb_dim, num_classes=num_classes, activation=activation, norm=norm, num_groups=num_groups, use_attention=i in attention_resolutions, )) now_channels = out_channels if i != 0: self.ups.append(Upsample(now_channels)) assert len(channels) == 0 self.out_norm = get_norm(norm, base_channels, num_groups) self.out_conv = nn.Conv2d(base_channels, img_channels, 3, padding=1) def forward(self, x, time=None, y=None): # 是否对输入进行padding ip = self.initial_pad if ip != 0: x = F.pad(x, (ip,) * 4) # 对时间轴输入的全连接层 if self.time_mlp is not None: if time is None: raise ValueError("time conditioning was specified but tim is not passed") time_emb = self.time_mlp(time) else: time_emb = None if self.num_classes is not None and y is None: raise ValueError("class conditioning was specified but y is not passed") # 对输入图片的第一个卷积 x = self.init_conv(x) # skips用于存放下采样的中间层 skips = [x] for layer in self.downs: x = layer(x, time_emb, y) skips.append(x) # 特征整合与提取 for layer in self.mid: x = layer(x, time_emb, y) # 上采样并进行特征融合 for layer in self.ups: if isinstance(layer, ResidualBlock): x = torch.cat([x, skips.pop()], dim=1) x = layer(x, time_emb, y) # 上采样并进行特征融合 x = self.activation(self.out_norm(x)) x = self.out_conv(x) if self.initial_pad != 0: return x[:, :, ip:-ip, ip:-ip] else: return x三、Diffusion的训练思路Diffusion的训练思路比较简单,首先随机给每个batch里每张图片都生成一个t,代表我选择这个batch里面第t个时刻的噪声进行拟合。代码如下:
t = torch.randint(0, self.num_timesteps, (b,), device=device)生成batch_size个噪声,计算施加这个噪声后模型在t个时刻的噪声图片是怎么样的,如下所示:
def perturb_x(self, x, t, noise): return ( extract(self.sqrt_alphas_cumprod, t, x.shape) * x + extract(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * noise ) def get_losses(self, x, t, y): # x, noise [batch_size, 3, 64, 64] noise = torch.randn_like(x) perturbed_x = self.perturb_x(x, t, noise)之后利用这个噪声图片、t和网络模型计算预测噪声,利用预测噪声和实际噪声进行拟合。
def get_losses(self, x, t, y): # x, noise [batch_size, 3, 64, 64] noise = torch.randn_like(x) perturbed_x = self.perturb_x(x, t, noise) estimated_noise = self.model(perturbed_x, t, y) if self.loss_type == "l1": loss = F.l1_loss(estimated_noise, noise) elif self.loss_type == "l2": loss = F.mse_loss(estimated_noise, noise) return loss利用DDPM生成图片DDPM的库整体结构如下:
一、数据集的准备在训练前需要准备好数据集,数据集保存在datasets文件夹里面。
二、数据集的处理打开txt_annotation.py,默认指向根目录下的datasets。运行txt_annotation.py。 此时生成根目录下面的train_lines.txt。
三、模型训练在完成数据集处理后,运行train.py即可开始训练。 训练过程中,可在results文件夹内查看训练效果:
下一篇:新一代 L1 公链Aptos:安全、可扩展和可升级的Web3基础设施 |Tokenview(公链dapp)
友情链接: 武汉网站建设