位置: IT常识 - 正文
推荐整理分享机器学习中的数学原理——过拟合、正则化与惩罚函数,希望有所帮助,仅作参考,欢迎阅读内容。
文章相关热门搜索词:,内容如对您有帮助,希望把文章链接给更多的朋友!
通过这篇博客,你将清晰的明白什么是过拟合、正则化、惩罚函数。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下《 白话机器学习中的数学——过拟合、正则化与惩罚函数》
文章目录一、过拟合二、正则化2.1 正则化的方法2.2 正则化的效果三、惩罚函数一、过拟合之前我们提到过的模型只能拟合训练数据的状态被称为过拟合,英文是 overfitting。记得在学习回归的时候,过度增加函数 fθ(x)的次数会导致过拟合。过拟合不止在回归时出现,在分类时也经常发生,我们要时常留意它。 避免过拟合有以下方法:
增加全部训练数据的数量使用简单的模型正则化首先,重要的是增加全部训练数据的数量。之前我也讲过,机器学习是从数据中学习的,所以数据最重要。另外,使用更简单的模型也有助于防止过拟合。
二、正则化2.1 正则化的方法还记得我们在讲解回归的时候提到的目标函数吗? 我们要向这个目标函数增加下面这样的正则化项: 那么现在的E(θ)E(\boldsymbol{\theta})E(θ)就变为: 我们要对这个新的目标函数进行最小化,这种方法就称为正则化。 m 是参数的个数,不过一般来说不对 θ0 应用正则化。所以仔细看会发现 j 的取值是从 1 开始的。也就是说,假如预测函数的表达式为 fθ(x) = θ0 + θ1x + θ2x2,那么 m = 2 就意味着正则化的对象参数为 θ1 和 θ2,θ0 这种只有参数的项称为偏置项,一般不对它进行正则化。λ 是决定正则化项影响程度的正的常数。这个值需要我们自己来定。
2.2 正则化的效果光看表达式可能不容易理解。我们结合图来想象一下吧:首先把目标函数分成两个部分。 C(θ) 是本来就有的目标函数项,R(θ) 是正则化项。 C(θ) 和 R(θ) 相加之后就是新的目标函数,所以我们实际地把这两个函数的图形画出来,加起来看看。不过参数太多就画不出图来了,所以这里我们只关注 θ1。而且为了更加易懂,先不考虑 λ。 我们先从C(θ) 开始画起,不用太在意形状是否精确。在讲回归的时候,我们说过这个目 标函数开口向上,还记得吗?所以,我们假设它的形状是这样的:
从图中马上就可以看出最小值在哪里,是在θ1 = 4.5 附近。 从这个目标函数在没有正则化项时的形状来看,θ1 = 4.5 附近是最小值。接下来是 R(θ),它就相当于12θ12\frac{1}{2} \theta_1^221θ12所以是过原点的简单二次函数。 实际的目标函数是这两个函数之和E(θ) = C(θ) + R(θ),我们来画一下它的图形。顺便考虑一下最小值在哪里。把 θ1 各点上的 C(θ) 和 R(θ) 的高相加,然后用线把它们相连就好: 从图中我们可以看出来最小值是 θ1 = 0.9,与加正则化项之前相比,θ1 更接近 0 了。本来是在 θ1 = 4.5 处最小,现在是在 θ1 = 0.9 处最小,的确更接近 0 了。这就是正则化的效果。它可以防止参数变得过大,有助于参数接近较小的值。虽然我们只考虑了 θ1,但其他 θj 参数的情况也是类似的。 参数的值变小,意味着该参数的影响也会相应地变小。比如,有这样的一个预测函数 fθ(x):fθ(x)=θ+θ1x+θ2x2f_{\boldsymbol{\theta}}(\boldsymbol{x})=\theta_0+\theta_1 x+\theta_2 x^2fθ(x)=θ0+θ1x+θ2x2 极端一点,假设 θ2 = 0,这个表达式就从二次变为一次了,这就意味着本来是曲线的预测函数变为直线了: 这正是通过减小不需要的参数的影响,将复杂模型替换为简单模型来防止过拟合的方式。
三、惩罚函数为了防止参数的影响过大,在训练时要对参数施加一些惩罚。比如上面提到的 λ,可以控制正则化惩罚的强度。C(θ)=12∑i=1n(y(i)−fθ(x(i)))2R(θ)=λ2∑j=1mθj2\begin{aligned} & C(\boldsymbol{\theta})=\frac{1}{2} \sum_{i=1}^n\left(y^{(i)}-f_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)\right)^2 \\ & R(\boldsymbol{\theta})=\frac{\lambda}{2} \sum_{j=1}^m \theta_j^2 \end{aligned}C(θ)=21i=1∑n(y(i)−fθ(x(i)))2R(θ)=2λj=1∑mθj2 比如令 λ = 0,那就相当于不使用正则化 λ 越大,正则化的惩罚也就越严厉:
上一篇:Web 攻防之业务安全:密码找回安全案例总结.(web攻防之业务安全实战指南在线阅读)
下一篇:Content Security Policy (CSP) 介绍(content security policy blob)
友情链接: 武汉网站建设